These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 34340498)

  • 1. Vocal fold dynamics in a synthetic self-oscillating model: Contact pressure and dissipated-energy dose.
    Motie-Shirazi M; Zañartu M; Peterson SD; Erath BD
    J Acoust Soc Am; 2021 Jul; 150(1):478. PubMed ID: 34340498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Collision Pressure and Dissipated Power Dose in a Self-Oscillating Silicone Vocal Fold Model With a Posterior Glottal Opening.
    Motie-Shirazi M; Zañartu M; Peterson SD; Mehta DD; Hillman RE; Erath BD
    J Speech Lang Hear Res; 2022 Aug; 65(8):2829-2845. PubMed ID: 35914018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vocal fold dynamics in a synthetic self-oscillating model: Intraglottal aerodynamic pressure and energy.
    Motie-Shirazi M; Zañartu M; Peterson SD; Erath BD
    J Acoust Soc Am; 2021 Aug; 150(2):1332. PubMed ID: 34470335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of nodule size and stiffness on phonation threshold and collision pressures in a synthetic hemilaryngeal vocal fold model.
    Motie-Shirazi M; Zañartu M; Peterson SD; Mehta DD; Hillman RE; Erath BD
    J Acoust Soc Am; 2023 Jan; 153(1):654. PubMed ID: 36732229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward Development of a Vocal Fold Contact Pressure Probe: Sensor Characterization and Validation Using Synthetic Vocal Fold Models.
    Motie-Shirazi M; Zañartu M; Peterson SD; Mehta DD; Kobler JB; Hillman RE; Erath BD
    Appl Sci (Basel); 2019 Aug; 9(15):. PubMed ID: 32377408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A computational study of systemic hydration in vocal fold collision.
    Bhattacharya P; Siegmund T
    Comput Methods Biomech Biomed Engin; 2014; 17(16):1835-52. PubMed ID: 23531170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigating blunt force trauma to the larynx: The role of inferior-superior vocal fold displacement on phonation.
    Stewart ME; Erath BD
    J Biomech; 2021 May; 121():110377. PubMed ID: 33819698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of spatiotemporal liquid dynamics in a vibrating vocal fold by using a self-oscillating poroelastic model.
    Scholp A; Jeddeloh C; Tao C; Liu X; Dailey SH; Jiang JJ
    J Acoust Soc Am; 2020 Oct; 148(4):2161. PubMed ID: 33138511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation of vocal fold impact pressures with a self-oscillating finite-element model.
    Tao C; Jiang JJ; Zhang Y
    J Acoust Soc Am; 2006 Jun; 119(6):3987-94. PubMed ID: 16838541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vocal fold contact pressure in a three-dimensional body-cover phonation model.
    Zhang Z
    J Acoust Soc Am; 2019 Jul; 146(1):256. PubMed ID: 31370600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D-Printed Synthetic Vocal Fold Models.
    Romero RGT; Colton MB; Thomson SL
    J Voice; 2021 Sep; 35(5):685-694. PubMed ID: 32312610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical stress during phonation in a self-oscillating finite-element vocal fold model.
    Tao C; Jiang JJ
    J Biomech; 2007; 40(10):2191-8. PubMed ID: 17187805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of gradients in vocal fold elastic modulus on phonation.
    Bhattacharya P; Kelleher JE; Siegmund T
    J Biomech; 2015 Sep; 48(12):3356-63. PubMed ID: 26159059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of inferior surface angle on the self-oscillation of a computational vocal fold model.
    Smith SL; Thomson SL
    J Acoust Soc Am; 2012 May; 131(5):4062-75. PubMed ID: 22559379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling coupled aerodynamics and vocal fold dynamics using immersed boundary methods.
    Duncan C; Zhai G; Scherer R
    J Acoust Soc Am; 2006 Nov; 120(5 Pt 1):2859-71. PubMed ID: 17139744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling viscous dissipation during vocal fold contact: the influence of tissue viscosity and thickness with implications for hydration.
    Erath BD; Zañartu M; Peterson SD
    Biomech Model Mechanobiol; 2017 Jun; 16(3):947-960. PubMed ID: 28004225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A numerical strategy for finite element modeling of frictionless asymmetric vocal fold collision.
    Granados A; Misztal MK; Brunskog J; Visseq V; Erleben K
    Int J Numer Method Biomed Eng; 2017 Feb; 33(2):. PubMed ID: 27058999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of material anisotropy on vibration at onset in a three-dimensional vocal fold model.
    Zhang Z
    J Acoust Soc Am; 2014 Mar; 135(3):1480-90. PubMed ID: 24606284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational modeling of vibration-induced systemic hydration of vocal folds over a range of phonation conditions.
    Bhattacharya P; Siegmund T
    Int J Numer Method Biomed Eng; 2014 Oct; 30(10):1019-43. PubMed ID: 24760548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Verification of two minimally invasive methods for the estimation of the contact pressure in human vocal folds during phonation.
    Chen LJ; Mongeau L
    J Acoust Soc Am; 2011 Sep; 130(3):1618-27. PubMed ID: 21895099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.