These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 34340505)

  • 1. Dynamical motion of a pair of microparticles at the acoustic pressure nodal plane under the combined effect of axial primary radiation and interparticle forces.
    Hoque SZ; Nath A; Sen AK
    J Acoust Soc Am; 2021 Jul; 150(1):307. PubMed ID: 34340505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical study of interparticle radiation force acting on rigid spheres in a standing wave.
    Sepehrirahnama S; Lim KM; Chau FS
    J Acoust Soc Am; 2015 May; 137(5):2614-22. PubMed ID: 25994694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental measurement of interparticle acoustic radiation force in the Rayleigh limit.
    Mohapatra AR; Sepehrirahnama S; Lim KM
    Phys Rev E; 2018 May; 97(5-1):053105. PubMed ID: 29906896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acoustic interaction forces between small particles in an ideal fluid.
    Silva GT; Bruus H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063007. PubMed ID: 25615187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of viscosity and acoustic streaming on the interparticle radiation force between rigid spheres in a standing wave.
    Sepehrirahnama S; Chau FS; Lim KM
    Phys Rev E; 2016 Feb; 93(2):023307. PubMed ID: 26986439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acoustic particle trapping driven by axial primary radiation force in shaped traps.
    Malik L; Nath A; Nandy S; Laurell T; Sen AK
    Phys Rev E; 2022 Mar; 105(3-2):035103. PubMed ID: 35428152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of inverse Chladni patterns in liquids at microscale: roles of acoustic radiation and streaming-induced drag forces.
    Lei J
    Microfluid Nanofluidics; 2017; 21(3):50. PubMed ID: 32226357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical Determination of the Secondary Acoustic Radiation Force on a Small Sphere in a Plane Standing Wave Field.
    Simon G; Andrade MAB; Desmulliez MPY; Riehle MO; Bernassau AL
    Micromachines (Basel); 2019 Jun; 10(7):. PubMed ID: 31261902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparisons of the acoustic radiation force of ultrasonic standing waves in half-wavelength and quarter-wavelength micro-resonators of cylindrical geometry.
    Yang IH; Kim N
    Ultrasonics; 2024 Mar; 138():107267. PubMed ID: 38367402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Axial acoustic radiation force of progressive cylindrical diverging waves on a rigid and a soft cylinder immersed in an ideal compressible fluid.
    Mitri FG; Fellah ZE
    Ultrasonics; 2011 Jul; 51(5):523-6. PubMed ID: 21339000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acoustic dipole and monopole effects in solid particle interaction dynamics during acoustophoresis.
    Saeidi D; Saghafian M; Haghjooy Javanmard S; Hammarström B; Wiklund M
    J Acoust Soc Am; 2019 Jun; 145(6):3311. PubMed ID: 31255151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental study on inter-particle acoustic forces.
    Garcia-Sabaté A; Castro A; Hoyos M; González-Cinca R
    J Acoust Soc Am; 2014 Mar; 135(3):1056-63. PubMed ID: 24606249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generalized potential theory for close-range acoustic interactions in the Rayleigh limit.
    Sepehrirhnama S; Lim KM
    Phys Rev E; 2020 Oct; 102(4-1):043307. PubMed ID: 33212642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microparticle column geometry in acoustic stationary fields.
    Hancock A; Insana MF; Allen JS
    J Acoust Soc Am; 2003 Jan; 113(1):652-9. PubMed ID: 12558301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A numerical study of microparticle acoustophoresis driven by acoustic radiation forces and streaming-induced drag forces.
    Muller PB; Barnkob R; Jensen MJ; Bruus H
    Lab Chip; 2012 Nov; 12(22):4617-27. PubMed ID: 23010952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Axial time-averaged acoustic radiation force on a cylinder in a nonviscous fluid revisited.
    Mitri FG
    Ultrasonics; 2010 May; 50(6):620-7. PubMed ID: 20172573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The selection of layer thicknesses to control acoustic radiation force profiles in layered resonators.
    Hill M
    J Acoust Soc Am; 2003 Nov; 114(5):2654-61. PubMed ID: 14650002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Concentration of microparticles and bubbles in standing waves.
    Ostrovsky L
    J Acoust Soc Am; 2015 Dec; 138(6):3607-12. PubMed ID: 26723317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study on acoustic radiation force of an elastic sphere in an off-axial Gaussian beam using localized approximation.
    Li S; Shi J; Zhang X
    J Acoust Soc Am; 2022 Apr; 151(4):2602. PubMed ID: 35461475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theory of acoustic trapping of microparticles in capillary tubes.
    Bach JS; Bruus H
    Phys Rev E; 2020 Feb; 101(2-1):023107. PubMed ID: 32168631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.