These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 34340510)

  • 1. Mel frequency cepstral coefficient temporal feature integration for classifying squeak and rattle noise.
    Abeysinghe A; Fard M; Jazar R; Zambetta F; Davy J
    J Acoust Soc Am; 2021 Jul; 150(1):193. PubMed ID: 34340510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combination of VMD Mapping MFCC and LSTM: A New Acoustic Fault Diagnosis Method of Diesel Engine.
    Yan H; Bai H; Zhan X; Wu Z; Wen L; Jia X
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36366023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Applicability of VGGish embedding in bee colony monitoring: comparison with MFCC in colony sound classification.
    Di N; Sharif MZ; Hu Z; Xue R; Yu B
    PeerJ; 2023; 11():e14696. PubMed ID: 36721779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Snoring - An Acoustic Definition.
    Janott C; Rohrmeier C; Schmitt M; Hemmert W; Schuller B
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3653-3657. PubMed ID: 31946668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic large-scale classification of bird sounds is strongly improved by unsupervised feature learning.
    Stowell D; Plumbley MD
    PeerJ; 2014; 2():e488. PubMed ID: 25083350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lung sound classification using cepstral-based statistical features.
    Sengupta N; Sahidullah M; Saha G
    Comput Biol Med; 2016 Aug; 75():118-29. PubMed ID: 27286184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of Audio Data Compression on Feature Extraction for Vocal Biomarker Detection: Validation Study.
    Oreskovic J; Kaufman J; Fossat Y
    JMIR Biomed Eng; 2024 Apr; 9():e56246. PubMed ID: 38875677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noise-robust acoustic signature recognition using nonlinear Hebbian learning.
    Lu B; Dibazar A; Berger TW
    Neural Netw; 2010 Dec; 23(10):1252-63. PubMed ID: 20655704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phonocardiogram Signal Processing for Automatic Diagnosis of Congenital Heart Disorders through Fusion of Temporal and Cepstral Features.
    Aziz S; Khan MU; Alhaisoni M; Akram T; Altaf M
    Sensors (Basel); 2020 Jul; 20(13):. PubMed ID: 32640710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparative study of the SVM and K-nn machine learning algorithms for the diagnosis of respiratory pathologies using pulmonary acoustic signals.
    Palaniappan R; Sundaraj K; Sundaraj S
    BMC Bioinformatics; 2014 Jun; 15():223. PubMed ID: 24970564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bird sound recognition based on adaptive frequency cepstral coefficient and improved support vector machine using a hunter-prey optimizer.
    Chen X; Zeng Z
    Math Biosci Eng; 2023 Oct; 20(11):19438-19453. PubMed ID: 38052608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying the Russian voiceless non-palatalized fricatives /f/, /s/, and /ʃ/ from acoustic cues using machine learning.
    Ulrich N; Allassonnière-Tang M; Pellegrino F; Dediu D
    J Acoust Soc Am; 2021 Sep; 150(3):1806. PubMed ID: 34598630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dimensional feature weighting utilizing multiple kernel learning for single-channel talker location discrimination using the acoustic transfer function.
    Takashima R; Takiguchi T; Ariki Y
    J Acoust Soc Am; 2013 Feb; 133(2):891-901. PubMed ID: 23363107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic Identification of Snoring and Groaning Segments in Acoustic Recordings.
    Kok XH; Imtiaz SA; Rodriguez-Villegas E
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():1993-1996. PubMed ID: 36086260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bird sound spectrogram decomposition through Non-Negative Matrix Factorization for the acoustic classification of bird species.
    Ludeña-Choez J; Quispe-Soncco R; Gallardo-Antolín A
    PLoS One; 2017; 12(6):e0179403. PubMed ID: 28628630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Level CNN and Machine Learning Methods for Speaker Recognition.
    Costantini G; Cesarini V; Brenna E
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Novel Bird Sound Recognition Method Based on Multifeature Fusion and a Transformer Encoder.
    Zhang S; Gao Y; Cai J; Yang H; Zhao Q; Pan F
    Sensors (Basel); 2023 Sep; 23(19):. PubMed ID: 37836929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sound retrieval and ranking using sparse auditory representations.
    Lyon RF; Rehn M; Bengio S; Walters TC; Chechik G
    Neural Comput; 2010 Sep; 22(9):2390-416. PubMed ID: 20569181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modal and non-modal voice quality classification using acoustic and electroglottographic features.
    Borsky M; Mehta DD; Van Stan JH; Gudnason J
    IEEE/ACM Trans Audio Speech Lang Process; 2017 Dec; 25(12):2281-2291. PubMed ID: 33748320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ tissue classification during laser ablation using acoustic signals.
    Alperovich Z; Yamin G; Elul E; Bialolenker G; Ishaaya AA
    J Biophotonics; 2019 Sep; 12(9):e201800405. PubMed ID: 30983142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.