These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 34340556)

  • 1. Quantitative Inheritance of Sclerotinia Stem Rot Resistance in
    Khan MA; Cowling W; Banga SS; You MP; Tyagi V; Bharti B; Barbetti MJ
    Plant Dis; 2022 Jan; 106(1):127-136. PubMed ID: 34340556
    [No Abstract]   [Full Text] [Related]  

  • 2. Identification of QTLs for resistance to sclerotinia stem rot and BnaC.IGMT5.a as a candidate gene of the major resistant QTL SRC6 in Brassica napus.
    Wu J; Cai G; Tu J; Li L; Liu S; Luo X; Zhou L; Fan C; Zhou Y
    PLoS One; 2013; 8(7):e67740. PubMed ID: 23844081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arabidopsis GDSL1 overexpression enhances rapeseed Sclerotinia sclerotiorum resistance and the functional identification of its homolog in Brassica napus.
    Ding LN; Li M; Guo XJ; Tang MQ; Cao J; Wang Z; Liu R; Zhu KM; Guo L; Liu SY; Tan XL
    Plant Biotechnol J; 2020 May; 18(5):1255-1270. PubMed ID: 31693306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative transcriptomic analysis uncovers the complex genetic network for resistance to Sclerotinia sclerotiorum in Brassica napus.
    Wu J; Zhao Q; Yang Q; Liu H; Li Q; Yi X; Cheng Y; Guo L; Fan C; Zhou Y
    Sci Rep; 2016 Jan; 6():19007. PubMed ID: 26743436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic analysis of loci associated with partial resistance to Sclerotinia sclerotiorum in rapeseed (Brassica napus L.).
    Zhao J; Meng J
    Theor Appl Genet; 2003 Feb; 106(4):759-64. PubMed ID: 12596007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide association analysis and differential expression analysis of resistance to Sclerotinia stem rot in Brassica napus.
    Wei L; Jian H; Lu K; Filardo F; Yin N; Liu L; Qu C; Li W; Du H; Li J
    Plant Biotechnol J; 2016 Jun; 14(6):1368-80. PubMed ID: 26563848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of genomic regions involved in resistance against Sclerotinia sclerotiorum from wild Brassica oleracea.
    Mei J; Ding Y; Lu K; Wei D; Liu Y; Disi JO; Li J; Liu L; Liu S; McKay J; Qian W
    Theor Appl Genet; 2013 Feb; 126(2):549-56. PubMed ID: 23096003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A global study of transcriptome dynamics in canola (Brassica napus L.) responsive to Sclerotinia sclerotiorum infection using RNA-Seq.
    Joshi RK; Megha S; Rahman MH; Basu U; Kav NN
    Gene; 2016 Sep; 590(1):57-67. PubMed ID: 27265030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative trait loci for resistance to Sclerotinia sclerotiorum and its association with a homeologous non-reciprocal transposition in Brassica napus L.
    Zhao J; Udall JA; Quijada PA; Grau CR; Meng J; Osborn TC
    Theor Appl Genet; 2006 Feb; 112(3):509-16. PubMed ID: 16333614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differentially expressed proteins and associated histological and disease progression changes in cotyledon tissue of a resistant and susceptible genotype of brassica napus infected with Sclerotinia sclerotiorum.
    Garg H; Li H; Sivasithamparam K; Barbetti MJ
    PLoS One; 2013; 8(6):e65205. PubMed ID: 23776450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Attack modes and defence reactions in pathosystems involving Sclerotinia sclerotiorum, Brassica carinata, B. juncea and B. napus.
    Uloth MB; Clode PL; You MP; Barbetti MJ
    Ann Bot; 2016 Jan; 117(1):79-95. PubMed ID: 26420204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The infection processes of Sclerotinia sclerotiorum in cotyledon tissue of a resistant and a susceptible genotype of Brassica napus.
    Garg H; Li H; Sivasithamparam K; Kuo J; Barbetti MJ
    Ann Bot; 2010 Dec; 106(6):897-908. PubMed ID: 20929899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Co-expression of chimeric chitinase and a polygalacturonase-inhibiting protein in transgenic canola (Brassica napus) confers enhanced resistance to Sclerotinia sclerotiorum.
    Ziaei M; Motallebi M; Zamani MR; Panjeh NZ
    Biotechnol Lett; 2016 Jun; 38(6):1021-32. PubMed ID: 26875090
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of anti-sclerotinia scFv in transgenic Brassica napus enhances tolerance against stem rot.
    Yajima W; Verma SS; Shah S; Rahman MH; Liang Y; Kav NN
    N Biotechnol; 2010 Dec; 27(6):816-21. PubMed ID: 20933110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TMT-based quantitative proteomics analyses reveal novel defense mechanisms of Brassica napus against the devastating necrotrophic pathogen Sclerotinia sclerotiorum.
    Cao JY; Xu YP; Cai XZ
    J Proteomics; 2016 Jun; 143():265-277. PubMed ID: 26947552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Seedling Resistance to Sclerotinia sclerotiorum as Expressed Across Diverse Cruciferous Species.
    Uloth M; You MP; Finnegan PM; Banga SS; Yi H; Barbetti MJ
    Plant Dis; 2014 Feb; 98(2):184-190. PubMed ID: 30708771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA sequencing of Brassica napus reveals cellular redox control of Sclerotinia infection.
    Girard IJ; Tong C; Becker MG; Mao X; Huang J; de Kievit T; Fernando WGD; Liu S; Belmonte MF
    J Exp Bot; 2017 Nov; 68(18):5079-5091. PubMed ID: 29036633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced resistance to Sclerotinia sclerotiorum in Brassica napus by co-expression of defensin and chimeric chitinase genes.
    Zarinpanjeh N; Motallebi M; Zamani MR; Ziaei M
    J Appl Genet; 2016 Nov; 57(4):417-425. PubMed ID: 26862081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in the Sclerotinia sclerotiorum transcriptome during infection of Brassica napus.
    Seifbarghi S; Borhan MH; Wei Y; Coutu C; Robinson SJ; Hegedus DD
    BMC Genomics; 2017 Mar; 18(1):266. PubMed ID: 28356071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Introgression and pyramiding of genetic loci from wild Brassica oleracea into B. napus for improving Sclerotinia resistance of rapeseed.
    Mei J; Shao C; Yang R; Feng Y; Gao Y; Ding Y; Li J; Qian W
    Theor Appl Genet; 2020 Apr; 133(4):1313-1319. PubMed ID: 32008057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.