These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 34342056)

  • 1. An Anti-Fatigue Design Strategy for 3D Ribbon-Shaped Flexible Electronics.
    Cheng X; Zhang F; Bo R; Shen Z; Pang W; Jin T; Song H; Xue Z; Zhang Y
    Adv Mater; 2021 Sep; 33(37):e2102684. PubMed ID: 34342056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioinspired design and assembly of a multilayer cage-shaped sensor capable of multistage load bearing and collapse prevention.
    Cheng X; Liu Z; Jin T; Zhang F; Zhang H; Zhang Y
    Nanotechnology; 2021 Apr; 32(15):155506. PubMed ID: 33348323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible Electronics toward Wearable Sensing.
    Gao W; Ota H; Kiriya D; Takei K; Javey A
    Acc Chem Res; 2019 Mar; 52(3):523-533. PubMed ID: 30767497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D printed microstructures for flexible electronic devices.
    Liu Y; Xu Y; Avila R; Liu C; Xie Z; Wang L; Yu X
    Nanotechnology; 2019 Oct; 30(41):414001. PubMed ID: 31247596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Materials and Designs for Wearable Photodetectors.
    Cai S; Xu X; Yang W; Chen J; Fang X
    Adv Mater; 2019 May; 31(18):e1808138. PubMed ID: 30785644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An analytic model of two-level compressive buckling with applications in the assembly of free-standing 3D mesostructures.
    Shi Y; Pei P; Cheng X; Yan Z; Han M; Li Z; Gao C; Rogers JA; Huang Y; Zhang Y
    Soft Matter; 2018 Nov; 14(43):8828-8837. PubMed ID: 30349911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Postbuckling analyses of frame mesostructures consisting of straight ribbons for mechanically guided three-dimensional assembly.
    Liu Y; Xu Z; Hwang KC; Huang Y; Zhang Y
    Proc Math Phys Eng Sci; 2019 May; 475(2225):20190012. PubMed ID: 31236053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flexible and stretchable power sources for wearable electronics.
    Zamarayeva AM; Ostfeld AE; Wang M; Duey JK; Deckman I; Lechêne BP; Davies G; Steingart DA; Arias AC
    Sci Adv; 2017 Jun; 3(6):e1602051. PubMed ID: 28630897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polymer-Assisted Metal Deposition (PAMD) for Flexible and Wearable Electronics: Principle, Materials, Printing, and Devices.
    Li P; Zhang Y; Zheng Z
    Adv Mater; 2019 Sep; 31(37):e1902987. PubMed ID: 31304644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Remotely Controlled, Reversible, On-Demand Assembly and Reconfiguration of 3D Mesostructures via Liquid Crystal Elastomer Platforms.
    Li Y; Luo C; Yu K; Wang X
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):8929-8939. PubMed ID: 33577299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-Dimensional Stretchable Microelectronics by Projection Microstereolithography (PμSL).
    Wang Y; Li X; Fan S; Feng X; Cao K; Ge Q; Gao L; Lu Y
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):8901-8908. PubMed ID: 33587597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent Advances in 1D Stretchable Electrodes and Devices for Textile and Wearable Electronics: Materials, Fabrications, and Applications.
    Lee J; Llerena Zambrano B; Woo J; Yoon K; Lee T
    Adv Mater; 2020 Feb; 32(5):e1902532. PubMed ID: 31495991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymer-assisted metal deposition (PAMD): a full-solution strategy for flexible, stretchable, compressible, and wearable metal conductors.
    Yu Y; Yan C; Zheng Z
    Adv Mater; 2014 Aug; 26(31):5508-16. PubMed ID: 24458846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electro-mechanically controlled assembly of reconfigurable 3D mesostructures and electronic devices based on dielectric elastomer platforms.
    Pang W; Cheng X; Zhao H; Guo X; Ji Z; Li G; Liang Y; Xue Z; Song H; Zhang F; Xu Z; Sang L; Huang W; Li T; Zhang Y
    Natl Sci Rev; 2020 Feb; 7(2):342-354. PubMed ID: 34692050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Materials, Structures, and Functions for Flexible and Stretchable Biomimetic Sensors.
    Li T; Li Y; Zhang T
    Acc Chem Res; 2019 Feb; 52(2):288-296. PubMed ID: 30653299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent Advances in Flexible and Wearable Pressure Sensors Based on Piezoresistive 3D Monolithic Conductive Sponges.
    Ding Y; Xu T; Onyilagha O; Fong H; Zhu Z
    ACS Appl Mater Interfaces; 2019 Feb; 11(7):6685-6704. PubMed ID: 30689335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lab-on-Skin: A Review of Flexible and Stretchable Electronics for Wearable Health Monitoring.
    Liu Y; Pharr M; Salvatore GA
    ACS Nano; 2017 Oct; 11(10):9614-9635. PubMed ID: 28901746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Breathable and Large Curved Area Perceptible Flexible Piezoresistive Sensors Fabricated with Conductive Nanofiber Assemblies.
    Zhong W; Jiang H; Jia K; Ding X; Yadav A; Ke Y; Li M; Chen Y; Wang D
    ACS Appl Mater Interfaces; 2020 Aug; 12(33):37764-37773. PubMed ID: 32814398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advanced Carbon for Flexible and Wearable Electronics.
    Wang C; Xia K; Wang H; Liang X; Yin Z; Zhang Y
    Adv Mater; 2019 Mar; 31(9):e1801072. PubMed ID: 30300444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexible Transparent Electronic Gas Sensors.
    Wang T; Guo Y; Wan P; Zhang H; Chen X; Sun X
    Small; 2016 Jul; 12(28):3748-56. PubMed ID: 27276698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.