These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 34342330)

  • 1. Electrically tunable band gap in strained h-BN/silicene van der Waals heterostructures.
    de Vargas DD; Köhler MH; Baierle RJ
    Phys Chem Chem Phys; 2021 Aug; 23(31):17033-17040. PubMed ID: 34342330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Silicene and germanene on InSe substrates: structures and tunable electronic properties.
    Fan Y; Liu X; Wang J; Ai H; Zhao M
    Phys Chem Chem Phys; 2018 Apr; 20(16):11369-11377. PubMed ID: 29644364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and electronic properties of a van der Waals heterostructure based on silicene and gallium selenide: effect of strain and electric field.
    Le PTT; Hieu NN; Bui LM; Phuc HV; Hoi BD; Amin B; Nguyen CV
    Phys Chem Chem Phys; 2018 Nov; 20(44):27856-27864. PubMed ID: 30398248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Dynamics Simulation on In-Plane Thermal Conductivity of Graphene/Hexagonal Boron Nitride van der Waals Heterostructures.
    Yang Y; Ma J; Yang J; Zhang Y
    ACS Appl Mater Interfaces; 2022 Oct; 14(40):45742-45751. PubMed ID: 36172714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunable spin-polarized band gap in Si
    Duarte de Vargas D; Baierle RJ
    RSC Adv; 2020 Feb; 10(15):8927-8935. PubMed ID: 35496562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First-principles identifications of superstructures of germanene on Ag(111) surface and h-BN substrate.
    Li L; Zhao M
    Phys Chem Chem Phys; 2013 Oct; 15(39):16853-63. PubMed ID: 23995323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electronic Properties of h-BCN-Blue Phosphorene van der Waals Heterostructures.
    Kaewmaraya T; Srepusharawoot P; Hussian T; Amornkitbamrung V
    Chemphyschem; 2018 Mar; 19(5):612-618. PubMed ID: 29210157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laser Shock Tuning Dynamic Interlayer Coupling in Graphene-Boron Nitride Moiré Superlattices.
    Kumar P; Liu J; Motlag M; Tong L; Hu Y; Huang X; Bandopadhyay A; Pati SK; Ye L; Irudayaraj J; Cheng GJ
    Nano Lett; 2019 Jan; 19(1):283-291. PubMed ID: 30525695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorinated graphene and hexagonal boron nitride as ALD seed layers for graphene-based van der Waals heterostructures.
    Guo H; Liu Y; Xu Y; Meng N; Wang H; Hasan T; Wang X; Luo J; Yu B
    Nanotechnology; 2014 Sep; 25(35):355202. PubMed ID: 25116064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insight into the stacking and the species-ordering dependences of interlayer bonding in SiC/GeC polar heterostructures.
    Tasnim KJ; Alharbi SAR; Musa MRK; Lovell SH; Akridge ZA; Yu M
    Nanotechnology; 2022 Jan; 33(15):. PubMed ID: 34972095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biaxial strain, electric field and interlayer distance-tailored electronic structure and magnetic properties of two-dimensional g-C
    Gao Y; Zhou B; Wang X
    Phys Chem Chem Phys; 2021 Mar; 23(10):6171-6181. PubMed ID: 33687408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interlayer Interactions in van der Waals Heterostructures: Electron and Phonon Properties.
    Le NB; Huan TD; Woods LM
    ACS Appl Mater Interfaces; 2016 Mar; 8(9):6286-92. PubMed ID: 26885874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of optimum optoelectronic properties in vertically stacked MoS
    Tan S; Zhao Y; Dong J; Yang G; Ouyang G
    Phys Chem Chem Phys; 2019 Oct; 21(41):23179-23186. PubMed ID: 31612172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and electronic properties of silicene on MgX₂ (X = Cl, Br, and I).
    Zhu J; Schwingenschlögl U
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):11675-81. PubMed ID: 25000976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emergence of Interfacial Polarons from Electron-Phonon Coupling in Graphene/h-BN van der Waals Heterostructures.
    Chen C; Avila J; Wang S; Wang Y; Mucha-Kruczyński M; Shen C; Yang R; Nosarzewski B; Devereaux TP; Zhang G; Asensio MC
    Nano Lett; 2018 Feb; 18(2):1082-1087. PubMed ID: 29302973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phonon Thermal Transport across Multilayer Graphene/Hexagonal Boron Nitride van der Waals Heterostructures.
    Wu X; Han Q
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):32564-32578. PubMed ID: 34196535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stable Silicene in Graphene/Silicene Van der Waals Heterostructures.
    Li G; Zhang L; Xu W; Pan J; Song S; Zhang Y; Zhou H; Wang Y; Bao L; Zhang YY; Du S; Ouyang M; Pantelides ST; Gao HJ
    Adv Mater; 2018 Dec; 30(49):e1804650. PubMed ID: 30368921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable doping and band gap of graphene on functionalized hexagonal boron nitride with hydrogen and fluorine.
    Tang S; Yu J; Liu L
    Phys Chem Chem Phys; 2013 Apr; 15(14):5067-77. PubMed ID: 23450178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of spin-orbital coupling effects on the electronic structure of two dimensional van der Waals heterostructures.
    You B; Wang X; Mi W
    Phys Chem Chem Phys; 2015 Dec; 17(46):31253-9. PubMed ID: 26549052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel Van Der Waals Heterostructures Based on Borophene, Graphene-like GaN and ZnO for Nanoelectronics: A First Principles Study.
    Slepchenkov MM; Kolosov DA; Glukhova OE
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.