These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 34342439)

  • 1. Predicting Micropollutant Removal by Reverse Osmosis and Nanofiltration Membranes: Is Machine Learning Viable?
    Jeong N; Chung TH; Tong T
    Environ Sci Technol; 2021 Aug; 55(16):11348-11359. PubMed ID: 34342439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of organic contaminant rejection by nanofiltration and reverse osmosis membranes using interpretable machine learning models.
    Zhu T; Zhang Y; Tao C; Chen W; Cheng H
    Sci Total Environ; 2023 Jan; 857(Pt 1):159348. PubMed ID: 36228787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring the Knowledge Attained by Machine Learning on Ion Transport across Polyamide Membranes Using Explainable Artificial Intelligence.
    Jeong N; Epsztein R; Wang R; Park S; Lin S; Tong T
    Environ Sci Technol; 2023 Nov; 57(46):17851-17862. PubMed ID: 36917705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling micropollutant removal by nanofiltration and reverse osmosis membranes: considerations and challenges.
    Castaño Osorio S; Biesheuvel PM; Spruijt E; Dykstra JE; van der Wal A
    Water Res; 2022 Oct; 225():119130. PubMed ID: 36240724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting micropollutant removal through nanopore-sized membranes using several machine-learning approaches based on feature engineering.
    Yogarathinam LT; Abba SI; Usman J; Lawal DU; Aljundi IH
    RSC Adv; 2024 Jun; 14(27):19331-19348. PubMed ID: 38887641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of antibiotics and estrogens by nanofiltration and reverse osmosis membranes.
    Yang L; Xia C; Jiang J; Chen X; Zhou Y; Yuan C; Bai L; Meng S; Cao G
    J Hazard Mater; 2024 Jan; 461():132628. PubMed ID: 37783143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of the natural hormone estrone from aqueous solutions using nanofiltration and reverse osmosis.
    Schäfer AI; Nghiem LD; Waite TD
    Environ Sci Technol; 2003 Jan; 37(1):182-8. PubMed ID: 12542309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of bisphenol A (BPA) from water by various nanofiltration (NF) and reverse osmosis (RO) membranes.
    Yüksel S; Kabay N; Yüksel M
    J Hazard Mater; 2013 Dec; 263 Pt 2():307-10. PubMed ID: 23731784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding Rejection Mechanisms of Trace Organic Contaminants by Polyamide Membranes via Data-Knowledge Codriven Machine Learning.
    Wang H; Zeng J; Dai R; Wang Z
    Environ Sci Technol; 2024 Apr; 58(13):5878-5888. PubMed ID: 38498471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of haloacetic acids from swimming pool water by reverse osmosis and nanofiltration.
    Yang L; She Q; Wan MP; Wang R; Chang VW; Tang CY
    Water Res; 2017 Jun; 116():116-125. PubMed ID: 28324708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of water matrices on removal of veterinary pharmaceuticals by nanofiltration and reverse osmosis membranes.
    Dolar D; Vuković A; Asperger D; Kosutić K
    J Environ Sci (China); 2011; 23(8):1299-307. PubMed ID: 22128537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent progress in the applications of layer-by-layer assembly to the preparation of nanostructured ion-rejecting water purification membranes.
    Sanyal O; Lee I
    J Nanosci Nanotechnol; 2014 Mar; 14(3):2178-89. PubMed ID: 24745210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Response surface methodology and artificial neural network modelling for the performance evaluation of pilot-scale hybrid nanofiltration (NF) & reverse osmosis (RO) membrane system for the treatment of brackish ground water.
    Srivastava A; K A; Nair A; Ram S; Agarwal S; Ali J; Singh R; Garg MC
    J Environ Manage; 2021 Jan; 278(Pt 1):111497. PubMed ID: 33130432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Review on the fate of organic micropollutants in wastewater treatment and water reuse with membranes.
    Siegrist H; Joss A
    Water Sci Technol; 2012; 66(6):1369-76. PubMed ID: 22828319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of silica fouling on the removal of pharmaceuticals and personal care products by nanofiltration and reverse osmosis membranes.
    Lin YL; Chiou JH; Lee CH
    J Hazard Mater; 2014 Jul; 277():102-9. PubMed ID: 24560524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dsorption of estrone on nanofiltration and reverse osmosis membranes in water and wastewater treatment.
    Nghiem LD; Schäfer AI; Waite TD
    Water Sci Technol; 2002; 46(4-5):265-72. PubMed ID: 12361019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of fluoride and uranium by nanofiltration and reverse osmosis: a review.
    Shen J; Schäfer A
    Chemosphere; 2014 Dec; 117():679-91. PubMed ID: 25461935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rejection efficiency of water quality parameters by reverse osmosis and nanofiltration membranes.
    Peng W; Escobar IC
    Environ Sci Technol; 2003 Oct; 37(19):4435-41. PubMed ID: 14572097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of Cd(II) ions from aqueous solution and industrial effluent using reverse osmosis and nanofiltration membranes.
    Kheriji J; Tabassi D; Hamrouni B
    Water Sci Technol; 2015; 72(7):1206-16. PubMed ID: 26398037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strong improvement of nanofiltration performance on micropollutant removal and reduction of membrane fouling by hydrolyzed-aluminum nanoparticles.
    Wang P; Wang F; Jiang H; Zhang Y; Zhao M; Xiong R; Ma J
    Water Res; 2020 May; 175():115649. PubMed ID: 32200335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.