BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 34342539)

  • 1. Exploring Proteomes of Robust Yarrowia lipolytica Isolates Cultivated in Biomass Hydrolysate Reveals Key Processes Impacting Mixed Sugar Utilization, Lipid Accumulation, and Degradation.
    Walker C; Dien B; Giannone RJ; Slininger P; Thompson SR; Trinh CT
    mSystems; 2021 Aug; 6(4):e0044321. PubMed ID: 34342539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding Functional Roles of Native Pentose-Specific Transporters for Activating Dormant Pentose Metabolism in Yarrowia lipolytica.
    Ryu S; Trinh CT
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipid production from lignocellulosic biomass using an engineered Yarrowia lipolytica strain.
    Drzymała-Kapinos K; Mirończuk AM; Dobrowolski A
    Microb Cell Fact; 2022 Oct; 21(1):226. PubMed ID: 36307797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Yarrowia lipolytica produces lipid-rich biomass in medium mimicking lignocellulosic biomass hydrolysate.
    Dias B; Fernandes H; Lopes M; Belo I
    Appl Microbiol Biotechnol; 2023 Jun; 107(12):3925-3937. PubMed ID: 37191683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activating and Elucidating Metabolism of Complex Sugars in Yarrowia lipolytica.
    Ryu S; Hipp J; Trinh CT
    Appl Environ Microbiol; 2016 Feb; 82(4):1334-1345. PubMed ID: 26682853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enabling xylose utilization in Yarrowia lipolytica for lipid production.
    Li H; Alper HS
    Biotechnol J; 2016 Sep; 11(9):1230-40. PubMed ID: 27367454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioproduction of succinic acid from xylose by engineered
    Prabhu AA; Ledesma-Amaro R; Lin CSK; Coulon F; Thakur VK; Kumar V
    Biotechnol Biofuels; 2020; 13():113. PubMed ID: 32607128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A survey of yeast from the Yarrowia clade for lipid production in dilute acid pretreated lignocellulosic biomass hydrolysate.
    Quarterman J; Slininger PJ; Kurtzman CP; Thompson SR; Dien BS
    Appl Microbiol Biotechnol; 2017 Apr; 101(8):3319-3334. PubMed ID: 28012044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering Yarrowia lipolytica to produce fuels and chemicals from xylose: A review.
    Sun T; Yu Y; Wang K; Ledesma-Amaro R; Ji XJ
    Bioresour Technol; 2021 Oct; 337():125484. PubMed ID: 34320765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering xylose utilization in Yarrowia lipolytica by understanding its cryptic xylose pathway.
    Rodriguez GM; Hussain MS; Gambill L; Gao D; Yaguchi A; Blenner M
    Biotechnol Biofuels; 2016; 9():149. PubMed ID: 27446238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Draft Genome Assemblies of Five Robust Yarrowia lipolytica Strains Exhibiting High Lipid Production, Pentose Sugar Utilization, and Sugar Alcohol Secretion from Undetoxified Lignocellulosic Biomass Hydrolysates.
    Walker C; Ryu S; Na H; Zane M; LaButti K; Lipzen A; Haridas S; Barry K; Grigoriev IV; Quarterman J; Slininger P; Dien B; Trinh CT
    Microbiol Resour Announc; 2018 Sep; 7(12):. PubMed ID: 30533660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Installing xylose assimilation and cellodextrin phosphorolysis pathways in obese Yarrowia lipolytica facilitates cost-effective lipid production from lignocellulosic hydrolysates.
    Zhang Y; Li M; Zhu R; Xin Y; Guo Z; Gu Z; Guo Z; Zhang L
    Biotechnol Biofuels Bioprod; 2023 Nov; 16(1):186. PubMed ID: 38031183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering oleaginous yeast Yarrowia lipolytica for enhanced limonene production from xylose and lignocellulosic hydrolysate.
    Yao F; Liu SC; Wang DN; Liu ZJ; Hua Q; Wei LJ
    FEMS Yeast Res; 2020 Sep; 20(6):. PubMed ID: 32840573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combination of a Push-Pull-Block Strategy with a Heterologous Xylose Assimilation Pathway toward Lipid Overproduction from Lignocellulose in
    Sun T; Yu Y; Wang L; Qi Y; Xu T; Wang Z; Lin L; Ledesma-Amaro R; Ji XJ
    ACS Synth Biol; 2023 Mar; 12(3):761-767. PubMed ID: 36789673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-throughput fermentation screening for the yeast Yarrowia lipolytica with real-time monitoring of biomass and lipid production.
    Back A; Rossignol T; Krier F; Nicaud JM; Dhulster P
    Microb Cell Fact; 2016 Aug; 15(1):147. PubMed ID: 27553851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering
    Niehus X; Crutz-Le Coq AM; Sandoval G; Nicaud JM; Ledesma-Amaro R
    Biotechnol Biofuels; 2018; 11():11. PubMed ID: 29387172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding and Eliminating the Detrimental Effect of Thiamine Deficiency on the Oleaginous Yeast Yarrowia lipolytica.
    Walker C; Ryu S; Giannone RJ; Garcia S; Trinh CT
    Appl Environ Microbiol; 2020 Jan; 86(3):. PubMed ID: 31704686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tolerance of Yarrowia lipolytica to inhibitors commonly found in lignocellulosic hydrolysates.
    Konzock O; Zaghen S; Norbeck J
    BMC Microbiol; 2021 Mar; 21(1):77. PubMed ID: 33685391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel evolved Yarrowia lipolytica strains for enhanced growth and lipid content under high concentrations of crude glycerol.
    Tsirigka A; Theodosiou E; Patsios SI; Tsoureki A; Andreadelli A; Papa E; Aggeli A; Karabelas AJ; Makris AM
    Microb Cell Fact; 2023 Mar; 22(1):62. PubMed ID: 37004109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic engineering of Yarrowia lipolytica to produce chemicals and fuels from xylose.
    Ledesma-Amaro R; Lazar Z; Rakicka M; Guo Z; Fouchard F; Coq AC; Nicaud JM
    Metab Eng; 2016 Nov; 38():115-124. PubMed ID: 27396355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.