These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 34342582)

  • 1. Physiological and motion signatures in static and time-varying functional connectivity and their subject identifiability.
    Xifra-Porxas A; Kassinopoulos M; Mitsis GD
    Elife; 2021 Aug; 10():. PubMed ID: 34342582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The quest for identifiability in human functional connectomes.
    Amico E; Goñi J
    Sci Rep; 2018 May; 8(1):8254. PubMed ID: 29844466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring MEG brain fingerprints: Evaluation, pitfalls, and interpretations.
    Sareen E; Zahar S; Ville DV; Gupta A; Griffa A; Amico E
    Neuroimage; 2021 Oct; 240():118331. PubMed ID: 34237444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Network and state specificity in connectivity-based predictions of individual behavior.
    Kraljević N; Langner R; Küppers V; Raimondo F; Patil KR; Eickhoff SB; Müller VI
    Hum Brain Mapp; 2024 Jun; 45(8):e26753. PubMed ID: 38864353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uncovering multi-site identifiability based on resting-state functional connectomes.
    Bari S; Amico E; Vike N; Talavage TM; Goñi J
    Neuroimage; 2019 Nov; 202():115967. PubMed ID: 31352124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating the sensitivity of functional connectivity measures to motion artifact in resting-state fMRI data.
    Mahadevan AS; Tooley UA; Bertolero MA; Mackey AP; Bassett DS
    Neuroimage; 2021 Nov; 241():118408. PubMed ID: 34284108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing the network specific individual characteristics in rs-fMRI functional connectivity by dictionary learning.
    Jain P; Chakraborty A; Hafiz R; Sao AK; Biswal B
    Hum Brain Mapp; 2023 Jun; 44(8):3410-3432. PubMed ID: 37070786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Behavioural relevance of spontaneous, transient brain network interactions in fMRI.
    Vidaurre D; Llera A; Smith SM; Woolrich MW
    Neuroimage; 2021 Apr; 229():117713. PubMed ID: 33421594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of physiological response functions to correct for fluctuations in resting-state fMRI related to heart rate and respiration.
    Kassinopoulos M; Mitsis GD
    Neuroimage; 2019 Nov; 202():116150. PubMed ID: 31487547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissociating individual connectome traits using low-rank learning.
    Qin J; Shen H; Zeng LL; Gao K; Luo Z; Hu D
    Brain Res; 2019 Nov; 1722():146348. PubMed ID: 31348912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Refined measure of functional connectomes for improved identifiability and prediction.
    Cai B; Zhang G; Hu W; Zhang A; Zille P; Zhang Y; Stephen JM; Wilson TW; Calhoun VD; Wang YP
    Hum Brain Mapp; 2019 Nov; 40(16):4843-4858. PubMed ID: 31355994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Typicality of functional connectivity robustly captures motion artifacts in rs-fMRI across datasets, atlases, and preprocessing pipelines.
    Kopal J; Pidnebesna A; Tomeček D; Tintěra J; Hlinka J
    Hum Brain Mapp; 2020 Dec; 41(18):5325-5340. PubMed ID: 32881215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interpreting temporal fluctuations in resting-state functional connectivity MRI.
    Liégeois R; Laumann TO; Snyder AZ; Zhou J; Yeo BTT
    Neuroimage; 2017 Dec; 163():437-455. PubMed ID: 28916180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural Basis of Large-Scale Functional Connectivity in the Mouse.
    Grandjean J; Zerbi V; Balsters JH; Wenderoth N; Rudin M
    J Neurosci; 2017 Aug; 37(34):8092-8101. PubMed ID: 28716961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resting state networks in empirical and simulated dynamic functional connectivity.
    Glomb K; Ponce-Alvarez A; Gilson M; Ritter P; Deco G
    Neuroimage; 2017 Oct; 159():388-402. PubMed ID: 28782678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Individual differences and time-varying features of modular brain architecture.
    Liao X; Cao M; Xia M; He Y
    Neuroimage; 2017 May; 152():94-107. PubMed ID: 28242315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Individual differences in haemoglobin concentration influence bold fMRI functional connectivity and its correlation with cognition.
    Ward PGD; Orchard ER; Oldham S; Arnatkevičiūtė A; Sforazzini F; Fornito A; Storey E; Egan GF; Jamadar SD
    Neuroimage; 2020 Nov; 221():117196. PubMed ID: 32721510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neurobiological basis of head motion in brain imaging.
    Zeng LL; Wang D; Fox MD; Sabuncu M; Hu D; Ge M; Buckner RL; Liu H
    Proc Natl Acad Sci U S A; 2014 Apr; 111(16):6058-62. PubMed ID: 24711399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global signal regression strengthens association between resting-state functional connectivity and behavior.
    Li J; Kong R; Liégeois R; Orban C; Tan Y; Sun N; Holmes AJ; Sabuncu MR; Ge T; Yeo BTT
    Neuroimage; 2019 Aug; 196():126-141. PubMed ID: 30974241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of Denoising Strategies to Address Motion-Correlated Artifacts in Resting-State Functional Magnetic Resonance Imaging Data from the Human Connectome Project.
    Burgess GC; Kandala S; Nolan D; Laumann TO; Power JD; Adeyemo B; Harms MP; Petersen SE; Barch DM
    Brain Connect; 2016 Nov; 6(9):669-680. PubMed ID: 27571276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.