These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 34342887)

  • 1. Auditory spatial attention gradients and cognitive control as a function of vigilance.
    Golob EJ; Nelson JT; Scheuerman J; Venable KB; Mock JR
    Psychophysiology; 2021 Oct; 58(10):e13903. PubMed ID: 34342887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Auditory vigilance task performance and cerebral hemodynamics: effects of spatial uncertainty.
    Hess LJ; Greenlee ET
    Exp Brain Res; 2024 Jul; 242(7):1787-1795. PubMed ID: 38822826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuroticism and vigilance revisited: A transcranial doppler investigation.
    Mandell AR; Becker A; VanAndel A; Nelson A; Shaw TH
    Conscious Cogn; 2015 Nov; 36():19-26. PubMed ID: 26057404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcranial Doppler sonography reveals sustained attention deficits in young adults diagnosed with ADHD.
    Shaw TH; Curby TW; Satterfield K; Monfort SS; Ramirez R
    Exp Brain Res; 2019 Feb; 237(2):511-520. PubMed ID: 30467657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cerebral blood flow modulations during antisaccade preparation in chronic hypotension.
    Duschek S; Hoffmann A; Montoro CI; Bair A; Reyes Del Paso GA; Ettinger U
    Psychophysiology; 2019 Mar; 56(3):e13305. PubMed ID: 30456801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cerebral hemovelocity reveals differential resource allocation strategies for extraverts and introverts during vigilance.
    Shaw TH; Nguyen C; Satterfield K; Ramirez R; McKnight PE
    Exp Brain Res; 2016 Feb; 234(2):577-85. PubMed ID: 26563163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of self-control on cognitive resource allocation during sustained attention: a transcranial Doppler investigation.
    Becker A; Mandell AR; Tangney JP; Chrosniak LD; Shaw TH
    Exp Brain Res; 2015 Jul; 233(7):2215-23. PubMed ID: 25921229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of vigilance performance using eye blinks.
    McIntire LK; McKinley RA; Goodyear C; McIntire JP
    Appl Ergon; 2014 Mar; 45(2):354-62. PubMed ID: 23722006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Neuroergonomics of Vigilance.
    Funke ME; Warm JS; Matthews G; Funke GJ; Chiu PY; Shaw TH; Greenlee ET
    Hum Factors; 2017 Feb; 59(1):62-75. PubMed ID: 28146671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Event-related cerebral hemodynamics reveal target-specific resource allocation for both "go" and "no-go" response-based vigilance tasks.
    Shaw TH; Funke ME; Dillard M; Funke GJ; Warm JS; Parasuraman R
    Brain Cogn; 2013 Aug; 82(3):265-73. PubMed ID: 23727665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Executive and arousal vigilance decrement in the context of the attentional networks: The ANTI-Vea task.
    Luna FG; Marino J; Roca J; Lupiáñez J
    J Neurosci Methods; 2018 Aug; 306():77-87. PubMed ID: 29791865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new semantic vigilance task: vigilance decrement, workload, and sensitivity to dual-task costs.
    Epling SL; Russell PN; Helton WS
    Exp Brain Res; 2016 Jan; 234(1):133-9. PubMed ID: 26403293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Does Depleting Self-Control Result in Poorer Vigilance Performance?
    Satterfield K; Harwood AE; Helton WS; Shaw TH
    Hum Factors; 2019 May; 61(3):415-425. PubMed ID: 30372632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pupillometry and the vigilance decrement: Task-evoked but not baseline pupil measures reflect declining performance in visual vigilance tasks.
    Martin JT; Whittaker AH; Johnston SJ
    Eur J Neurosci; 2022 Feb; 55(3):778-799. PubMed ID: 34978115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Abbreviated Vigilance Task and Its Attentional Contributors.
    Craig CM; Klein MI
    Hum Factors; 2019 May; 61(3):426-439. PubMed ID: 30682267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Missed targets, reaction times, and arousal are related to trait anxiety and attention to pain during an experimental vigilance task with a painful target.
    Emerson NM; Meeker TJ; Greenspan JD; Saffer MI; Campbell CM; Korzeniewska A; Lenz FA
    J Neurophysiol; 2020 Feb; 123(2):462-472. PubMed ID: 31596643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cerebral blood flow modulations during proactive control in chronic hypotension.
    Duschek S; Hoffmann A; Bair A; Reyes Del Paso GA; Montoro CI
    Brain Cogn; 2018 Aug; 125():135-141. PubMed ID: 29990703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional characteristics of control adaptation in intermodal sensory processing.
    Melcher T; Pfister R; Busmann M; Schlüter MC; Leyhe T; Gruber O
    Brain Cogn; 2015 Jun; 96():43-55. PubMed ID: 25917247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vigilance and Automation Dependence in Operation of Multiple Unmanned Aerial Systems (UAS): A Simulation Study.
    Wohleber RW; Matthews G; Lin J; Szalma JL; Calhoun GL; Funke GJ; Chiu CP; Ruff HA
    Hum Factors; 2019 May; 61(3):488-505. PubMed ID: 30265579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Task engagement, cerebral blood flow velocity, and diagnostic monitoring for sustained attention.
    Matthews G; Warm JS; Reinerman-Jones LE; Langheim LK; Washburn DA; Tripp L
    J Exp Psychol Appl; 2010 Jun; 16(2):187-203. PubMed ID: 20565203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.