These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 34343379)

  • 1. An Advanced 'clickECM' That Can be Modified by the Inverse-Electron-Demand Diels-Alder Reaction.
    Nellinger S; Rapp MA; Southan A; Wittmann V; Kluger PJ
    Chembiochem; 2022 Jan; 23(1):e202100266. PubMed ID: 34343379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. clickECM: Development of a cell-derived extracellular matrix with azide functionalities.
    Ruff SM; Keller S; Wieland DE; Wittmann V; Tovar GEM; Bach M; Kluger PJ
    Acta Biomater; 2017 Apr; 52():159-170. PubMed ID: 27965173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inverse electron demand Diels-Alder (IEDDA) reactions in peptide chemistry.
    Pagel M
    J Pept Sci; 2019 Jan; 25(1):e3141. PubMed ID: 30585397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. IEDDA: An Attractive Bioorthogonal Reaction for Biomedical Applications.
    Handula M; Chen KT; Seimbille Y
    Molecules; 2021 Jul; 26(15):. PubMed ID: 34361793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of the Inverse-Electron-Demand Diels-Alder Reaction for Metabolic Glycoengineering.
    Haiber LM; Kufleitner M; Wittmann V
    Front Chem; 2021; 9():654932. PubMed ID: 33928067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Azide-Functional Extracellular Matrix Coatings as a Bioactive Platform for Bioconjugation.
    Keller S; Wörgötter K; Liedek A; Kluger PJ; Bach M; Tovar GEM; Southan A
    ACS Appl Mater Interfaces; 2020 Jun; 12(24):26868-26879. PubMed ID: 32426964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Norbornylated Cellulose and Its "Click" Modification by an Inverse-Electron Demand Diels-Alder (iEDDA) Reaction.
    Wappl C; Schallert V; Slugovc C; Knall AC; Spirk S
    Molecules; 2021 Mar; 26(5):. PubMed ID: 33806278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alginate modification via click chemistry for biomedical applications.
    Deng Y; Shavandi A; Okoro OV; Nie L
    Carbohydr Polym; 2021 Oct; 270():118360. PubMed ID: 34364605
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The inverse electron demand Diels-Alder click reaction in radiochemistry.
    Reiner T; Zeglis BM
    J Labelled Comp Radiopharm; 2014 Apr; 57(4):285-90. PubMed ID: 24347429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systematic Screening of Different Polyglycerin-Based Dienophile Macromonomers for Efficient Nanogel Formation through IEDDA Inverse Nanoprecipitation.
    Oehrl A; Schötz S; Haag R
    Macromol Rapid Commun; 2020 Jan; 41(1):e1900510. PubMed ID: 31750985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inverse Electron-Demand Diels-Alder Bioorthogonal Reactions.
    Wu H; Devaraj NK
    Top Curr Chem (Cham); 2016 Feb; 374(1):3. PubMed ID: 27572986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Domino inverse electron-demand Diels-Alder/cyclopropanation reaction of diazines catalyzed by a bidentate Lewis acid.
    Kessler SN; Neuburger M; Wegner HA
    J Am Chem Soc; 2012 Oct; 134(43):17885-8. PubMed ID: 23066957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Triple Orthogonal Labeling of Glycans by Applying Photoclick Chemistry.
    Schart VF; Hassenrück J; Späte AK; Dold JEGA; Fahrner R; Wittmann V
    Chembiochem; 2019 Jan; 20(2):166-171. PubMed ID: 30499611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface patterning with natural and synthetic polymers via an inverse electron demand Diels-Alder reaction employing microcontact chemistry.
    Roling O; Mardyukov A; Lamping S; Vonhören B; Rinnen S; Arlinghaus HF; Studer A; Ravoo BJ
    Org Biomol Chem; 2014 Oct; 12(39):7828-35. PubMed ID: 25166737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Triazines: Syntheses and Inverse Electron-demand Diels-Alder Reactions.
    Zhang FG; Chen Z; Tang X; Ma JA
    Chem Rev; 2021 Dec; 121(23):14555-14593. PubMed ID: 34586777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From mechanism to mouse: a tale of two bioorthogonal reactions.
    Sletten EM; Bertozzi CR
    Acc Chem Res; 2011 Sep; 44(9):666-76. PubMed ID: 21838330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Copper-Free Click Chemistry: Applications in Drug Delivery, Cell Tracking, and Tissue Engineering.
    Yoon HY; Lee D; Lim DK; Koo H; Kim K
    Adv Mater; 2022 Mar; 34(10):e2107192. PubMed ID: 34752658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Post-synthetic modification of DNA by inverse-electron-demand Diels-Alder reaction.
    Schoch J; Wiessler M; Jäschke A
    J Am Chem Soc; 2010 Jul; 132(26):8846-7. PubMed ID: 20550120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iluminated by foreign letters - Strategies for site-specific cyclopropene modification of large functional RNAs via in vitro transcription.
    Eggert F; Kulikov K; Domnick C; Leifels P; Kath-Schorr S
    Methods; 2017 May; 120():17-27. PubMed ID: 28454775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cycloadditions for Studying Nucleic Acids.
    Kath-Schorr S
    Top Curr Chem (Cham); 2016 Feb; 374(1):4. PubMed ID: 27572987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.