These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
676 related articles for article (PubMed ID: 34343402)
1. Automatic segmentation of rectal tumor on diffusion-weighted images by deep learning with U-Net. Zhu HT; Zhang XY; Shi YJ; Li XT; Sun YS J Appl Clin Med Phys; 2021 Sep; 22(9):324-331. PubMed ID: 34343402 [TBL] [Abstract][Full Text] [Related]
2. Technical Note: A deep learning-based autosegmentation of rectal tumors in MR images. Wang J; Lu J; Qin G; Shen L; Sun Y; Ying H; Zhang Z; Hu W Med Phys; 2018 Jun; 45(6):2560-2564. PubMed ID: 29663417 [TBL] [Abstract][Full Text] [Related]
3. Deep learning for fully automated tumor segmentation and extraction of magnetic resonance radiomics features in cervical cancer. Lin YC; Lin CH; Lu HY; Chiang HJ; Wang HK; Huang YT; Ng SH; Hong JH; Yen TC; Lai CH; Lin G Eur Radiol; 2020 Mar; 30(3):1297-1305. PubMed ID: 31712961 [TBL] [Abstract][Full Text] [Related]
4. MRI-based automatic segmentation of rectal cancer using 2D U-Net on two independent cohorts. Knuth F; Adde IA; Huynh BN; Groendahl AR; Winter RM; NegÄrd A; Holmedal SH; Meltzer S; Ree AH; Flatmark K; Dueland S; Hole KH; Seierstad T; Redalen KR; Futsaether CM Acta Oncol; 2022 Feb; 61(2):255-263. PubMed ID: 34918621 [TBL] [Abstract][Full Text] [Related]
6. Deep Learning for Fully-Automated Localization and Segmentation of Rectal Cancer on Multiparametric MR. Trebeschi S; van Griethuysen JJM; Lambregts DMJ; Lahaye MJ; Parmar C; Bakers FCH; Peters NHGM; Beets-Tan RGH; Aerts HJWL Sci Rep; 2017 Jul; 7(1):5301. PubMed ID: 28706185 [TBL] [Abstract][Full Text] [Related]
7. Automatic segmentation of the clinical target volume and organs at risk in the planning CT for rectal cancer using deep dilated convolutional neural networks. Men K; Dai J; Li Y Med Phys; 2017 Dec; 44(12):6377-6389. PubMed ID: 28963779 [TBL] [Abstract][Full Text] [Related]
8. Automatic intraprostatic lesion segmentation in multiparametric magnetic resonance images with proposed multiple branch UNet. Chen Y; Xing L; Yu L; Bagshaw HP; Buyyounouski MK; Han B Med Phys; 2020 Dec; 47(12):6421-6429. PubMed ID: 33012016 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of Diffusion Lesion Volume Measurements in Acute Ischemic Stroke Using Encoder-Decoder Convolutional Network. Kim YC; Lee JE; Yu I; Song HN; Baek IY; Seong JK; Jeong HG; Kim BJ; Nam HS; Chung JW; Bang OY; Kim GM; Seo WK Stroke; 2019 Jun; 50(6):1444-1451. PubMed ID: 31092169 [TBL] [Abstract][Full Text] [Related]
10. Postoperative glioma segmentation in CT image using deep feature fusion model guided by multi-sequence MRIs. Tang F; Liang S; Zhong T; Huang X; Deng X; Zhang Y; Zhou L Eur Radiol; 2020 Feb; 30(2):823-832. PubMed ID: 31650265 [TBL] [Abstract][Full Text] [Related]
11. Automated Segmentation of Colorectal Tumor in 3D MRI Using 3D Multiscale Densely Connected Convolutional Neural Network. Soomro MH; Coppotelli M; Conforto S; Schmid M; Giunta G; Del Secco L; Neri E; Caruso D; Rengo M; Laghi A J Healthc Eng; 2019; 2019():1075434. PubMed ID: 30838121 [TBL] [Abstract][Full Text] [Related]
12. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks. Tong N; Gou S; Yang S; Ruan D; Sheng K Med Phys; 2018 Oct; 45(10):4558-4567. PubMed ID: 30136285 [TBL] [Abstract][Full Text] [Related]
13. A deep-learning approach for segmentation of liver tumors in magnetic resonance imaging using UNet+. Wang J; Peng Y; Jing S; Han L; Li T; Luo J BMC Cancer; 2023 Nov; 23(1):1060. PubMed ID: 37923988 [TBL] [Abstract][Full Text] [Related]
14. Automatic prostate segmentation using deep learning on clinically diverse 3D transrectal ultrasound images. Orlando N; Gillies DJ; Gyacskov I; Romagnoli C; D'Souza D; Fenster A Med Phys; 2020 Jun; 47(6):2413-2426. PubMed ID: 32166768 [TBL] [Abstract][Full Text] [Related]
15. Two-stage deep learning model for fully automated pancreas segmentation on computed tomography: Comparison with intra-reader and inter-reader reliability at full and reduced radiation dose on an external dataset. Panda A; Korfiatis P; Suman G; Garg SK; Polley EC; Singh DP; Chari ST; Goenka AH Med Phys; 2021 May; 48(5):2468-2481. PubMed ID: 33595105 [TBL] [Abstract][Full Text] [Related]
16. Fully Automatic Segmentation of Acute Ischemic Lesions on Diffusion-Weighted Imaging Using Convolutional Neural Networks: Comparison with Conventional Algorithms. Woo I; Lee A; Jung SC; Lee H; Kim N; Cho SJ; Kim D; Lee J; Sunwoo L; Kang DW Korean J Radiol; 2019 Aug; 20(8):1275-1284. PubMed ID: 31339015 [TBL] [Abstract][Full Text] [Related]
17. Deep Learning Network for Segmentation of the Prostate Gland With Median Lobe Enlargement in T2-weighted MR Images: Comparison With Manual Segmentation Method. Salvaggio G; Comelli A; Portoghese M; Cutaia G; Cannella R; Vernuccio F; Stefano A; Dispensa N; La Tona G; Salvaggio L; Calamia M; Gagliardo C; Lagalla R; Midiri M Curr Probl Diagn Radiol; 2022; 51(3):328-333. PubMed ID: 34315623 [TBL] [Abstract][Full Text] [Related]
18. Imaging segmentation mechanism for rectal tumors using improved U-Net. Zhang K; Yang X; Cui Y; Zhao J; Li D BMC Med Imaging; 2024 Apr; 24(1):95. PubMed ID: 38654162 [TBL] [Abstract][Full Text] [Related]
19. Improved U-Net based on contour prediction for efficient segmentation of rectal cancer. Li D; Chu X; Cui Y; Zhao J; Zhang K; Yang X Comput Methods Programs Biomed; 2022 Jan; 213():106493. PubMed ID: 34749245 [TBL] [Abstract][Full Text] [Related]
20. Automatic contour segmentation of cervical cancer using artificial intelligence. Kano Y; Ikushima H; Sasaki M; Haga A J Radiat Res; 2021 Sep; 62(5):934-944. PubMed ID: 34401914 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]