These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 34343431)

  • 21. Bi
    Moon S; Park J; Lee H; Yang JW; Yun J; Park YS; Lee J; Im H; Jang HW; Yang W; Moon J
    Adv Sci (Weinh); 2023 Feb; 10(6):e2206286. PubMed ID: 36646498
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biological components and bioelectronic interfaces of water splitting photoelectrodes for solar hydrogen production.
    Braun A; Boudoire F; Bora DK; Faccio G; Hu Y; Kroll A; Mun BS; Wilson ST
    Chemistry; 2015 Mar; 21(11):4188-99. PubMed ID: 25504590
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recent Advances in Visible-Light-Driven Photoelectrochemical Water Splitting: Catalyst Nanostructures and Reaction Systems.
    Chen X; Zhang Z; Chi L; Nair AK; Shangguan W; Jiang Z
    Nanomicro Lett; 2016; 8(1):1-12. PubMed ID: 30464988
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ru-P pair sites boost charge transport in hematite photoanodes for exceeding 1% efficient solar water splitting.
    Gao RT; Liu L; Li Y; Yang Y; He J; Liu X; Zhang X; Wang L; Wu L
    Proc Natl Acad Sci U S A; 2023 Jul; 120(27):e2300493120. PubMed ID: 37364112
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Integrating a Semitransparent, Fullerene-Free Organic Solar Cell in Tandem with a BiVO
    Peng Y; Govindaraju GV; Lee DK; Choi KS; Andrew TL
    ACS Appl Mater Interfaces; 2017 Jul; 9(27):22449-22455. PubMed ID: 28636350
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exploring what prompts ITIC to become a superior acceptor in organic solar cell by combining molecular dynamics simulation with quantum chemistry calculation.
    Pan QQ; Li SB; Duan YC; Wu Y; Zhang J; Geng Y; Zhao L; Su ZM
    Phys Chem Chem Phys; 2017 Nov; 19(46):31227-31235. PubMed ID: 29143010
    [TBL] [Abstract][Full Text] [Related]  

  • 27. All inorganic semiconductor nanowire mesh for direct solar water splitting.
    Liu B; Wu CH; Miao J; Yang P
    ACS Nano; 2014 Nov; 8(11):11739-44. PubMed ID: 25365141
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Surface Passivation of GaN Nanowires for Enhanced Photoelectrochemical Water-Splitting.
    Varadhan P; Fu HC; Priante D; Retamal JR; Zhao C; Ebaid M; Ng TK; Ajia I; Mitra S; Roqan IS; Ooi BS; He JH
    Nano Lett; 2017 Mar; 17(3):1520-1528. PubMed ID: 28177248
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A TiO
    Le AQH; Nguyen NNT; Tran HD; Nguyen VH; Tran LH
    Beilstein J Nanotechnol; 2022; 13():1520-1530. PubMed ID: 36605608
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Emergence of High-Performance Conjugated Polymer/Inorganic Semiconductor Hybrid Photoelectrodes for Solar-Driven Photoelectrochemical Water Splitting.
    Zhou J; Cheng H; Cheng J; Wang L; Xu H
    Small Methods; 2024 Feb; 8(2):e2300418. PubMed ID: 37421184
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A sustainable molybdenum oxysulphide-cobalt phosphate photocatalyst for effectual solar-driven water splitting.
    Iqbal N; Khan I; Ali A; Qurashi A
    J Adv Res; 2022 Feb; 36():15-26. PubMed ID: 35127161
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photoelectrochemical Ethylene Glycol Oxidization Coupled with Hydrogen Generation Using Metal Oxide Photoelectrodes.
    Kang F; Wang Q; Du D; Wu L; Cheung DWF; Luo J
    Angew Chem Int Ed Engl; 2024 Oct; ():e202417648. PubMed ID: 39374188
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Photoelectrochemical Solar Water Splitting: The Role of the Carbon Nanomaterials in Bismuth Vanadate Composite Photoanodes toward Efficient Charge Separation and Transport.
    Prakash J; Prasad U; Alexander R; Bahadur J; Dasgupta K; Kannan ANM
    Langmuir; 2019 Nov; 35(45):14492-14504. PubMed ID: 31618038
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transferred monolayer MoS
    Hassan MA; Kim MW; Johar MA; Waseem A; Kwon MK; Ryu SW
    Sci Rep; 2019 Dec; 9(1):20141. PubMed ID: 31882920
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Understanding the Roles of NiO
    Zhang M; Antony RP; Chiam SY; Abdi FF; Wong LH
    ChemSusChem; 2019 May; 12(9):2022-2028. PubMed ID: 30246933
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Integrating Computation and Experiment to Investigate Photoelectrodes for Solar Water Splitting at the Microscopic Scale.
    Wang W; Radmilovic A; Choi KS; Galli G
    Acc Chem Res; 2021 Oct; 54(20):3863-3872. PubMed ID: 34619961
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Photoelectrochemical water splitting enhanced by self-assembled metal nanopillars embedded in an oxide semiconductor photoelectrode.
    Kawasaki S; Takahashi R; Yamamoto T; Kobayashi M; Kumigashira H; Yoshinobu J; Komori F; Kudo A; Lippmaa M
    Nat Commun; 2016 Jun; 7():11818. PubMed ID: 27255209
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hybrid artificial photosynthetic systems comprising semiconductors as light harvesters and biomimetic complexes as molecular cocatalysts.
    Wen F; Li C
    Acc Chem Res; 2013 Nov; 46(11):2355-64. PubMed ID: 23730891
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interfacial repairing of semiconductor-electrocatalyst interfaces for efficient photoelectrochemical water oxidation.
    Zhao H; Ning X; Wang Z; Du P; Zhang R; He Y; Lu X
    J Colloid Interface Sci; 2022 Jun; 615():318-326. PubMed ID: 35144232
    [TBL] [Abstract][Full Text] [Related]  

  • 40. BiVO
    Baek JH; Kim BJ; Han GS; Hwang SW; Kim DR; Cho IS; Jung HS
    ACS Appl Mater Interfaces; 2017 Jan; 9(2):1479-1487. PubMed ID: 27989115
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.