These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 34343564)

  • 1. Integrated multiomics analysis identifies molecular landscape perturbations during hyperammonemia in skeletal muscle and myotubes.
    Welch N; Singh SS; Kumar A; Dhruba SR; Mishra S; Sekar J; Bellar A; Attaway AH; Chelluboyina A; Willard BB; Li L; Huo Z; Karnik SS; Esser K; Longworth MS; Shah YM; Davuluri G; Pal R; Dasarathy S
    J Biol Chem; 2021 Sep; 297(3):101023. PubMed ID: 34343564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic reprogramming during hyperammonemia targets mitochondrial function and postmitotic senescence.
    Kumar A; Welch N; Mishra S; Bellar A; Silva RN; Li L; Singh SS; Sharkoff M; Kerr A; Chelluboyina AK; Sekar J; Attaway AH; Hoppel C; Willard B; Davuluri G; Dasarathy S
    JCI Insight; 2021 Dec; 6(24):. PubMed ID: 34935641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hyperammonaemia-induced skeletal muscle mitochondrial dysfunction results in cataplerosis and oxidative stress.
    Davuluri G; Allawy A; Thapaliya S; Rennison JH; Singh D; Kumar A; Sandlers Y; Van Wagoner DR; Flask CA; Hoppel C; Kasumov T; Dasarathy S
    J Physiol; 2016 Dec; 594(24):7341-7360. PubMed ID: 27558544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dysregulated cellular redox status during hyperammonemia causes mitochondrial dysfunction and senescence by inhibiting sirtuin-mediated deacetylation.
    Mishra S; Welch N; Karthikeyan M; Bellar A; Musich R; Singh SS; Zhang D; Sekar J; Attaway AH; Chelluboyina AK; Lorkowski SW; Roychowdhury S; Li L; Willard B; Smith JD; Hoppel CL; Vachharajani V; Kumar A; Dasarathy S
    Aging Cell; 2023 Jul; 22(7):e13852. PubMed ID: 37101412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ethanol sensitizes skeletal muscle to ammonia-induced molecular perturbations.
    Kant S; Davuluri G; Alchirazi KA; Welch N; Heit C; Kumar A; Gangadhariah M; Kim A; McMullen MR; Willard B; Luse DS; Nagy LE; Vasiliou V; Marini AM; Weiner ID; Dasarathy S
    J Biol Chem; 2019 May; 294(18):7231-7244. PubMed ID: 30872403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ammonia lowering reverses sarcopenia of cirrhosis by restoring skeletal muscle proteostasis.
    Kumar A; Davuluri G; Silva RNE; Engelen MPKJ; Ten Have GAM; Prayson R; Deutz NEP; Dasarathy S
    Hepatology; 2017 Jun; 65(6):2045-2058. PubMed ID: 28195332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hyperammonemia in cirrhosis induces transcriptional regulation of myostatin by an NF-κB-mediated mechanism.
    Qiu J; Thapaliya S; Runkana A; Yang Y; Tsien C; Mohan ML; Narayanan A; Eghtesad B; Mozdziak PE; McDonald C; Stark GR; Welle S; Naga Prasad SV; Dasarathy S
    Proc Natl Acad Sci U S A; 2013 Nov; 110(45):18162-7. PubMed ID: 24145431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic adaptation of skeletal muscle to hyperammonemia drives the beneficial effects of l-leucine in cirrhosis.
    Davuluri G; Krokowski D; Guan BJ; Kumar A; Thapaliya S; Singh D; Hatzoglou M; Dasarathy S
    J Hepatol; 2016 Nov; 65(5):929-937. PubMed ID: 27318325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impaired Ribosomal Biogenesis by Noncanonical Degradation of β-Catenin during Hyperammonemia.
    Davuluri G; Giusto M; Chandel R; Welch N; Alsabbagh K; Kant S; Kumar A; Kim A; Gangadhariah M; Ghosh PK; Tran U; Krajcik DM; Vasu K; DiDonato AJ; DiDonato JA; Willard B; Monga SP; Wang Y; Fox PL; Stark GR; Wessely O; Esser KA; Dasarathy S
    Mol Cell Biol; 2019 Aug; 39(16):. PubMed ID: 31138664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiomics-Identified Intervention to Restore Ethanol-Induced Dysregulated Proteostasis and Secondary Sarcopenia in Alcoholic Liver Disease.
    Singh SS; Kumar A; Welch N; Sekar J; Mishra S; Bellar A; Gangadhariah M; Attaway A; Al Khafaji H; Wu X; Pathak V; Agrawal V; McMullen MR; Hornberger TA; Nagy LE; Davuluri G; Dasarathy S
    Cell Physiol Biochem; 2021 Feb; 55(1):91-116. PubMed ID: 33543862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive exhaustion during prolonged intermittent hypoxia causes dysregulated skeletal muscle protein homeostasis.
    Attaway AH; Bellar A; Mishra S; Karthikeyan M; Sekar J; Welch N; Musich R; Singh SS; Kumar A; Menon A; King J; Langen R; Webster J; Scheraga RG; Rochon K; Mears J; Naga Prasad SV; Hatzoglou M; Chakraborty AA; Dasarathy S
    J Physiol; 2023 Feb; 601(3):567-606. PubMed ID: 36533558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shared and unique phosphoproteomics responses in skeletal muscle from exercise models and in hyperammonemic myotubes.
    Welch N; Singh SS; Musich R; Mansuri MS; Bellar A; Mishra S; Chelluboyina AK; Sekar J; Attaway AH; Li L; Willard B; Hornberger TA; Dasarathy S
    iScience; 2022 Nov; 25(11):105325. PubMed ID: 36345342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hyperammonemia and proteostasis in cirrhosis.
    Dasarathy S; Hatzoglou M
    Curr Opin Clin Nutr Metab Care; 2018 Jan; 21(1):30-36. PubMed ID: 29035972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hyperammonemia-mediated autophagy in skeletal muscle contributes to sarcopenia of cirrhosis.
    Qiu J; Tsien C; Thapalaya S; Narayanan A; Weihl CC; Ching JK; Eghtesad B; Singh K; Fu X; Dubyak G; McDonald C; Almasan A; Hazen SL; Naga Prasad SV; Dasarathy S
    Am J Physiol Endocrinol Metab; 2012 Oct; 303(8):E983-93. PubMed ID: 22895779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MicroRNA-204-5p modulates mitochondrial biogenesis in C2C12 myotubes and associates with oxidative capacity in humans.
    Houzelle A; Dahlmans D; Nascimento EBM; Schaart G; Jörgensen JA; Moonen-Kornips E; Kersten S; Wang X; Hoeks J
    J Cell Physiol; 2020 Dec; 235(12):9851-9863. PubMed ID: 32452584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Classical NF-κB activation impairs skeletal muscle oxidative phenotype by reducing IKK-α expression.
    Remels AH; Gosker HR; Langen RC; Polkey M; Sliwinski P; Galdiz J; van den Borst B; Pansters NA; Schols AM
    Biochim Biophys Acta; 2014 Feb; 1842(2):175-85. PubMed ID: 24215713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ndrg2 is a PGC-1α/ERRα target gene that controls protein synthesis and expression of contractile-type genes in C2C12 myotubes.
    Foletta VC; Brown EL; Cho Y; Snow RJ; Kralli A; Russell AP
    Biochim Biophys Acta; 2013 Dec; 1833(12):3112-3123. PubMed ID: 24008097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Altered Skeletal Muscle Mitochondrial Proteome As the Basis of Disruption of Mitochondrial Function in Diabetic Mice.
    Zabielski P; Lanza IR; Gopala S; Heppelmann CJ; Bergen HR; Dasari S; Nair KS
    Diabetes; 2016 Mar; 65(3):561-73. PubMed ID: 26718503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hyperammonemia-induced changes in the cerebral transcriptome and proteome.
    Schrimpf A; Knappe O; Qvartskhava N; Poschmann G; Stühler K; Bidmon HJ; Luedde T; Häussinger D; Görg B
    Anal Biochem; 2022 Mar; 641():114548. PubMed ID: 35032459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acute hyperammonemia activates branched-chain amino acid catabolism and decreases their extracellular concentrations: different sensitivity of red and white muscle.
    Holecek M; Kandar R; Sispera L; Kovarik M
    Amino Acids; 2011 Feb; 40(2):575-84. PubMed ID: 20614225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.