These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 34343754)
1. Spatiotemporal variation of extracellular polymeric substances (EPS) associated with the microphytobenthos of tidal flats in the Yellow Sea. Kim B; Lee J; Noh J; Bae H; Lee C; Ha HJ; Hwang K; Kim DU; Kwon BO; Ha HK; Pierre G; Delattre C; Michaud P; Khim JS Mar Pollut Bull; 2021 Oct; 171():112780. PubMed ID: 34343754 [TBL] [Abstract][Full Text] [Related]
2. Modelling the functioning of a coupled microphytobenthic-EPS-bacterial system in intertidal mudflats. Rakotomalala C; Guizien K; Grangeré K; Lefebvre S; Dupuy C; Orvain F Mar Environ Res; 2019 Sep; 150():104754. PubMed ID: 31299542 [TBL] [Abstract][Full Text] [Related]
3. Spatiotemporal variability in microphytobenthic primary production across bare intertidal flat, saltmarsh, and mangrove forest of Asia and Australia. Kwon BO; Kim H; Noh J; Lee SY; Nam J; Khim JS Mar Pollut Bull; 2020 Feb; 151():110707. PubMed ID: 32056580 [TBL] [Abstract][Full Text] [Related]
4. Nematodes stimulate biomass accumulation in a multispecies diatom biofilm. D'Hondt AS; Stock W; Blommaert L; Moens T; Sabbe K Mar Environ Res; 2018 Sep; 140():78-89. PubMed ID: 29891387 [TBL] [Abstract][Full Text] [Related]
5. Quantifying seasonal variations in microphytobenthos biomass on estuarine tidal flats using Sentinel-1/2 data. Zhang T; Tian B; Wang Y; Liu D; Sun S; Duan Y; Zhou Y Sci Total Environ; 2021 Jul; 777():146051. PubMed ID: 33677302 [TBL] [Abstract][Full Text] [Related]
6. Microphytobenthic biomass, species composition and environmental gradients in the mangrove intertidal region of the Andaman Archipelago, India. Balasubramaniam J; Prasath D; Jayaraj KA Environ Monit Assess; 2017 May; 189(5):231. PubMed ID: 28439805 [TBL] [Abstract][Full Text] [Related]
7. Rainfall effects on the erodibility of sediment and microphytobenthos in the intertidal flat. Ha HJ; Kim H; Noh J; Ha HK; Khim JS Environ Pollut; 2018 Nov; 242(Pt B):2051-2058. PubMed ID: 30231459 [TBL] [Abstract][Full Text] [Related]
8. Characterization of benthic biofilms in mangrove sediments and their variation in response to nutrients and contaminants. Yang L; Yang Q; Lin L; Luan T; Tam NFY Sci Total Environ; 2023 Jan; 857(Pt 1):159391. PubMed ID: 36240915 [TBL] [Abstract][Full Text] [Related]
9. Microphytobenthos spatio-temporal dynamics across an intertidal gradient using Random Forest classification and Sentinel-2 imagery. Haro S; Jesus B; Oiry S; Papaspyrou S; Lara M; González CJ; Corzo A Sci Total Environ; 2022 Jan; 804():149983. PubMed ID: 34517311 [TBL] [Abstract][Full Text] [Related]
10. Effects of sandy vs muddy sediments on the vertical distribution of microphytobenthos in intertidal flats of the Fraser River Estuary, Canada. Yin K; Zetsche EM; Harrison PJ Environ Sci Pollut Res Int; 2016 Jul; 23(14):14196-209. PubMed ID: 27053045 [TBL] [Abstract][Full Text] [Related]
11. Influence of tidal forcings on microphytobenthic resuspension dynamics and sediment fluxes in a disturbed coastal environment. Ha HJ; Kim H; Kwon BO; Khim JS; Ha HK Environ Int; 2020 Jun; 139():105743. PubMed ID: 32334124 [TBL] [Abstract][Full Text] [Related]
12. Effects of elevated temperature and CO2 on intertidal microphytobenthos. Cartaxana P; Vieira S; Ribeiro L; Rocha RJ; Cruz S; Calado R; da Silva JM BMC Ecol; 2015 Apr; 15():10. PubMed ID: 25888307 [TBL] [Abstract][Full Text] [Related]
13. Intertidal microphytobenthic primary production and net metabolism of a tropical estuary. Corzo A; Haro S; Gómez-Ramírez E; González CJ; Papaspyrou S; Garcia-Robledo E Mar Environ Res; 2024 Nov; 202():106741. PubMed ID: 39293274 [TBL] [Abstract][Full Text] [Related]
14. Different Types of Diatom-Derived Extracellular Polymeric Substances Drive Changes in Heterotrophic Bacterial Communities from Intertidal Sediments. Bohórquez J; McGenity TJ; Papaspyrou S; García-Robledo E; Corzo A; Underwood GJ Front Microbiol; 2017; 8():245. PubMed ID: 28289404 [TBL] [Abstract][Full Text] [Related]
15. Effects of the bloom of harmful benthic dinoflagellate Ostreopsis cf. ovata on the microphytobenthos community in the northern Adriatic Sea. Accoroni S; Romagnoli T; Pichierri S; Totti C Harmful Algae; 2016 May; 55():179-190. PubMed ID: 28073531 [TBL] [Abstract][Full Text] [Related]
16. Biogenic stabilization of intertidal sediments: the importance of extracellular polymeric substances produced by benthic diatoms. de Brouwer JF; Wolfstein K; Ruddy GK; Jones TE; Stal LJ Microb Ecol; 2005 May; 49(4):501-12. PubMed ID: 16052376 [TBL] [Abstract][Full Text] [Related]
17. Recovery of subtropical coastal intertidal system prokaryotes from a destruction event and the role of extracellular polymeric substances in the presence of endocrine disrupting chemicals. Yang L; Xiao S; Yang Q; Luan T; Tam NFY Environ Int; 2020 Nov; 144():106023. PubMed ID: 32822926 [TBL] [Abstract][Full Text] [Related]
18. Carbohydrate production in relation to microphytobenthic biofilm development: an integrated approach in a tidal mesocosm. Orvain F; Galois R; Barnard C; Sylvestre A; Blanchard G; Sauriau PG Microb Ecol; 2003 Mar; 45(3):237-51. PubMed ID: 12658521 [TBL] [Abstract][Full Text] [Related]