BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 34344840)

  • 1. The suitability of scanning electron microscopy in the evaluation of bone structure surfaces and selection of alloplastic materials for facial skeletal reconstruction.
    Job K; Składzień J
    Otolaryngol Pol; 2020 Dec; 75(4):14-19. PubMed ID: 34344840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New generation poly(ε-caprolactone)/gel-derived bioactive glass composites for bone tissue engineering: Part I. Material properties.
    Dziadek M; Menaszek E; Zagrajczuk B; Pawlik J; Cholewa-Kowalska K
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():9-21. PubMed ID: 26249560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomaterials in Craniomaxillofacial Reconstruction: Past, Present, and Future.
    Crist TE; Mathew PJ; Plotsker EL; Sevilla AC; Thaller SR
    J Craniofac Surg; 2021 Mar-Apr 01; 32(2):535-540. PubMed ID: 33704977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Skeletal volume enhancement: implants and osteotomies.
    Zim S
    Curr Opin Otolaryngol Head Neck Surg; 2004 Aug; 12(4):349-56. PubMed ID: 15252260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Study on tailoring the nanostructured surfaces of cuttlefish bone transformed hydroxyapatite porous ceramics and its effect on osteoblasts].
    Jing L; Yang C; Huan Z; Ke Q; Chang J
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2019 Mar; 33(3):363-369. PubMed ID: 30129337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical and Biological Properties of a Biodegradable Mg-Zn-Ca Porous Alloy.
    Zhang YQ; Li Y; Liu H; Bai J; Bao NR; Zhang Y; He P; Zhao JN; Tao L; Xue F; Zhou GX; Fan GT
    Orthop Surg; 2018 May; 10(2):160-168. PubMed ID: 29767463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. More advantages in detecting bone and soft tissue metastases from prostate cancer using
    Pianou NK; Stavrou PZ; Vlontzou E; Rondogianni P; Exarhos DN; Datseris IE
    Hell J Nucl Med; 2019; 22(1):6-9. PubMed ID: 30843003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of mineral density on the surface of mouse parietal bones: backscattered electron imaging of low accelerating voltage scanning electron microscopy.
    Hashizume H; Abe K; Ushiki T
    Arch Histol Cytol; 1997 Jun; 60(2):195-204. PubMed ID: 9232183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How do biomaterials affect the biological activities and responses of cells? An in vitro study.
    Pappalardo S; Carlino V; Brutto D; Sinatra F
    Minerva Stomatol; 2010 Sep; 59(9):445-64. PubMed ID: 20940685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of 3D porous SF/β-TCP hybrid scaffolds for bone tissue reconstruction.
    Park HJ; Min KD; Lee MC; Kim SH; Lee OJ; Ju HW; Moon BM; Lee JM; Park YR; Kim DW; Jeong JY; Park CH
    J Biomed Mater Res A; 2016 Jul; 104(7):1779-87. PubMed ID: 26999521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphological and chemical analysis of bone substitutes by scanning electron microscopy and microanalysis by spectroscopy of dispersion energy.
    da Cruz GA; de Toledo S; Sallum EA; de Lima AF
    Braz Dent J; 2007; 18(2):129-33. PubMed ID: 17982552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Study on hydroxyapatite porous scaffold bonded by phosphates and its biocompatibility].
    Dong Y; Zhang Q; Liu B; Guo Z; Lin P; Pu Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Oct; 22(5):985-9. PubMed ID: 16294736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A study of the relationship between process conditions and mechanical strength of mineralized red algae in the preparation of a marine-derived bone void filler.
    Walsh PJ; Walker GM; Maggs CA; Buchanan FJ
    Proc Inst Mech Eng H; 2011 Jun; 225(6):563-74. PubMed ID: 22034740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facial reconstruction using porous high-density polyethylene (medpor): long-term results.
    Niechajev I
    Aesthetic Plast Surg; 2012 Aug; 36(4):917-27. PubMed ID: 22684610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Problems in alloplastic middle ear reconstruction.
    Blayney AW; Williams KR; Erre JP; Lesser TH; Portmann M
    Acta Otolaryngol; 1992; 112(2):322-7. PubMed ID: 1605000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstruction of radial bone defect in rat by calcium silicate biomaterials.
    Oryan A; Alidadi S
    Life Sci; 2018 May; 201():45-53. PubMed ID: 29596919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Symposium "Implantable Materials in Facial Aesthetic and Reconstructive Surgery: Biocompatibility and Clinical Applications". American Society of Maxillofacial Surgeons. Montreal, Quebec, October 6, 1995.
    Yaremchuk MJ; Rubin JP; Posnick JC
    J Craniofac Surg; 1996 Nov; 7(6):473-84; discussion 485-6. PubMed ID: 10332269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoscale bonding between human bone and titanium surfaces: osseohybridization.
    Kim JS; Kang SM; Seo KW; Nahm KY; Chung KR; Kim SH; Ahn JP
    Biomed Res Int; 2015; 2015():960410. PubMed ID: 25667930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Application of elemental microanalysis for estimation of osteoinduction and osteoconduction of hydroxyapatite bone implants].
    Dawidowicz A; Pielka S; Paluch D; Kuryszko J; Staniszewska-Kuś J; Solski L
    Polim Med; 2005; 35(1):3-14. PubMed ID: 16050072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Properties of calcium carbonate-containing composite scaffolds.
    Olah L; Borbas L
    Acta Bioeng Biomech; 2008; 10(1):61-6. PubMed ID: 18634355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.