BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 34344859)

  • 41. Ependymal cell reactions in spinal cord segments after compression injury in adult rat.
    Takahashi M; Arai Y; Kurosawa H; Sueyoshi N; Shirai S
    J Neuropathol Exp Neurol; 2003 Feb; 62(2):185-94. PubMed ID: 12578228
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The IL-17A/IL-17RA Axis Is Not Related to Overall Survival and Cancer Stem Cell Modulation in Pancreatic Cancer.
    Li J; Betzler C; Lohneis P; Popp MC; Qin J; Kalinski T; Wartmann T; Bruns CJ; Zhao Y; Popp FC
    Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32210079
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Inhibition of p21-Activated Kinase 1 by IPA-3 Promotes Locomotor Recovery After Spinal Cord Injury in Mice.
    Ji X; Zhang Y; Zhang L; Chen H; Peng Y; Tang P
    Spine (Phila Pa 1976); 2016 Jun; 41(11):919-925. PubMed ID: 26863260
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sodium channel blockade with phenytoin protects spinal cord axons, enhances axonal conduction, and improves functional motor recovery after contusion SCI.
    Hains BC; Saab CY; Lo AC; Waxman SG
    Exp Neurol; 2004 Aug; 188(2):365-77. PubMed ID: 15246836
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Pathological CNS autoimmune disease triggered by traumatic spinal cord injury: implications for autoimmune vaccine therapy.
    Jones TB; Basso DM; Sodhi A; Pan JZ; Hart RP; MacCallum RC; Lee S; Whitacre CC; Popovich PG
    J Neurosci; 2002 Apr; 22(7):2690-700. PubMed ID: 11923434
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Tamoxifen attenuates inflammatory-mediated damage and improves functional outcome after spinal cord injury in rats.
    Tian DS; Liu JL; Xie MJ; Zhan Y; Qu WS; Yu ZY; Tang ZP; Pan DJ; Wang W
    J Neurochem; 2009 Jun; 109(6):1658-67. PubMed ID: 19457130
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Low-energy extracorporeal shock wave therapy promotes vascular endothelial growth factor expression and improves locomotor recovery after spinal cord injury.
    Yamaya S; Ozawa H; Kanno H; Kishimoto KN; Sekiguchi A; Tateda S; Yahata K; Ito K; Shimokawa H; Itoi E
    J Neurosurg; 2014 Dec; 121(6):1514-25. PubMed ID: 25280090
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Sprouting of axonal collaterals after spinal cord injury is prevented by delayed axonal degeneration.
    Collyer E; Catenaccio A; Lemaitre D; Diaz P; Valenzuela V; Bronfman F; Court FA
    Exp Neurol; 2014 Nov; 261():451-61. PubMed ID: 25079366
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Lanthionine ketimine ester promotes locomotor recovery after spinal cord injury by reducing neuroinflammation and promoting axon growth.
    Kotaka K; Nagai J; Hensley K; Ohshima T
    Biochem Biophys Res Commun; 2017 Jan; 483(1):759-764. PubMed ID: 27965088
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Activation of Neurogenesis in Multipotent Stem Cells Cultured In Vitro and in the Spinal Cord Tissue After Severe Injury by Inhibition of Glycogen Synthase Kinase-3.
    Rodriguez-Jimenez FJ; Vilches A; Perez-Arago MA; Clemente E; Roman R; Leal J; Castro AA; Fustero S; Moreno-Manzano V; Jendelova P; Stojkovic M; Erceg S
    Neurotherapeutics; 2021 Jan; 18(1):515-533. PubMed ID: 33000422
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Spinal cord injury reveals multilineage differentiation of ependymal cells.
    Meletis K; Barnabé-Heider F; Carlén M; Evergren E; Tomilin N; Shupliakov O; Frisén J
    PLoS Biol; 2008 Jul; 6(7):e182. PubMed ID: 18651793
    [TBL] [Abstract][Full Text] [Related]  

  • 52. LOTUS Inhibits Neuronal Apoptosis and Promotes Tract Regeneration in Contusive Spinal Cord Injury Model Mice.
    Ito S; Nagoshi N; Tsuji O; Shibata S; Shinozaki M; Kawabata S; Kojima K; Yasutake K; Hirokawa T; Matsumoto M; Takei K; Nakamura M; Okano H
    eNeuro; 2018; 5(5):. PubMed ID: 30560203
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Response of ependymal progenitors to spinal cord injury or enhanced physical activity in adult rat.
    Cizkova D; Nagyova M; Slovinska L; Novotna I; Radonak J; Cizek M; Mechirova E; Tomori Z; Hlucilova J; Motlik J; Sulla I; Vanicky I
    Cell Mol Neurobiol; 2009 Sep; 29(6-7):999-1013. PubMed ID: 19350385
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Blockade of interleukin-6 receptor suppresses reactive astrogliosis and ameliorates functional recovery in experimental spinal cord injury.
    Okada S; Nakamura M; Mikami Y; Shimazaki T; Mihara M; Ohsugi Y; Iwamoto Y; Yoshizaki K; Kishimoto T; Toyama Y; Okano H
    J Neurosci Res; 2004 Apr; 76(2):265-76. PubMed ID: 15048924
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Treatment with IL-19 improves locomotor functional recovery after contusion trauma to the spinal cord.
    Guo J; Wang H; Li L; Yuan Y; Shi X; Hou S
    Br J Pharmacol; 2018 Jul; 175(13):2611-2621. PubMed ID: 29500933
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Upregulation of TRESK Channels Contributes to Motor and Sensory Recovery after Spinal Cord Injury.
    Kim GT; Siregar AS; Kim EJ; Lee ES; Nyiramana MM; Woo MS; Hah YS; Han J; Kang D
    Int J Mol Sci; 2020 Nov; 21(23):. PubMed ID: 33256222
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An ex vivo spinal cord injury model to study ependymal cells in adult mouse tissue.
    Fernandez-Zafra T; Codeluppi S; Uhlén P
    Exp Cell Res; 2017 Aug; 357(2):236-242. PubMed ID: 28587745
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Administration of human peripheral blood-derived CD133+ cells accelerates functional recovery in a rat spinal cord injury model.
    Sasaki H; Ishikawa M; Tanaka N; Nakanishi K; Kamei N; Asahara T; Ochi M
    Spine (Phila Pa 1976); 2009 Feb; 34(3):249-54. PubMed ID: 19148043
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Purinergic Receptors in Spinal Cord-Derived Ependymal Stem/Progenitor Cells and Their Potential Role in Cell-Based Therapy for Spinal Cord Injury.
    Gómez-Villafuertes R; Rodríguez-Jiménez FJ; Alastrue-Agudo A; Stojkovic M; Miras-Portugal MT; Moreno-Manzano V
    Cell Transplant; 2015; 24(8):1493-509. PubMed ID: 25198194
    [TBL] [Abstract][Full Text] [Related]  

  • 60. miR-155 Deletion in Mice Overcomes Neuron-Intrinsic and Neuron-Extrinsic Barriers to Spinal Cord Repair.
    Gaudet AD; Mandrekar-Colucci S; Hall JC; Sweet DR; Schmitt PJ; Xu X; Guan Z; Mo X; Guerau-de-Arellano M; Popovich PG
    J Neurosci; 2016 Aug; 36(32):8516-32. PubMed ID: 27511021
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.