These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 34344970)

  • 1. Bioacoustic classification of avian calls from raw sound waveforms with an open-source deep learning architecture.
    Bravo Sanchez FJ; Hossain MR; English NB; Moore ST
    Sci Rep; 2021 Aug; 11(1):15733. PubMed ID: 34344970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BioCPPNet: automatic bioacoustic source separation with deep neural networks.
    Bermant PC
    Sci Rep; 2021 Dec; 11(1):23502. PubMed ID: 34873197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust sound event detection in bioacoustic sensor networks.
    Lostanlen V; Salamon J; Farnsworth A; Kelling S; Bello JP
    PLoS One; 2019; 14(10):e0214168. PubMed ID: 31647815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PROTAX-Sound: A probabilistic framework for automated animal sound identification.
    de Camargo UM; Somervuo P; Ovaskainen O
    PLoS One; 2017; 12(9):e0184048. PubMed ID: 28863178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploiting deep neural network and long short-term memory method-ologies in bioacoustic classification of LPC-based features.
    Gong CA; Su CS; Chao KW; Chao YC; Su CK; Chiu WH
    PLoS One; 2021; 16(12):e0259140. PubMed ID: 34941869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ORCA-SPOT: An Automatic Killer Whale Sound Detection Toolkit Using Deep Learning.
    Bergler C; Schröter H; Cheng RX; Barth V; Weber M; Nöth E; Hofer H; Maier A
    Sci Rep; 2019 Jul; 9(1):10997. PubMed ID: 31358873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using SincNet for Learning Pathological Voice Disorders.
    Hung CH; Wang SS; Wang CT; Fang SH
    Sensors (Basel); 2022 Sep; 22(17):. PubMed ID: 36081092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An extended clinical EEG dataset with 15,300 automatically labelled recordings for pathology decoding.
    Kiessner AK; Schirrmeister RT; Gemein LAW; Boedecker J; Ball T
    Neuroimage Clin; 2023; 39():103482. PubMed ID: 37544168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 5G AI-IoT System for Bird Species Monitoring and Song Classification.
    Segura-Garcia J; Sturley S; Arevalillo-Herraez M; Alcaraz-Calero JM; Felici-Castell S; Navarro-Camba EA
    Sensors (Basel); 2024 Jun; 24(11):. PubMed ID: 38894478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interpretable SincNet-based Deep Learning for Emotion Recognition from EEG brain activity.
    Mayor-Torres JM; Ravanelli M; Medina-DeVilliers SE; Lerner MD; Riccardi G
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():412-415. PubMed ID: 34891321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Survey of Underwater Acoustic Data Classification Methods Using Deep Learning for Shoreline Surveillance.
    Domingos LCF; Santos PE; Skelton PSM; Brinkworth RSA; Sammut K
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A changepoint prefilter for sound event detection in long-term bioacoustic recordings.
    Juodakis J; Marsland S; Priyadarshani N
    J Acoust Soc Am; 2021 Oct; 150(4):2469. PubMed ID: 34717492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An annotated set of audio recordings of Eastern North American birds containing frequency, time, and species information.
    Chronister LM; Rhinehart TA; Place A; Kitzes J
    Ecology; 2021 Jun; 102(6):e03329. PubMed ID: 33705568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acoustic classification of multiple simultaneous bird species: a multi-instance multi-label approach.
    Briggs F; Lakshminarayanan B; Neal L; Fern XZ; Raich R; Hadley SJ; Hadley AS; Betts MG
    J Acoust Soc Am; 2012 Jun; 131(6):4640-50. PubMed ID: 22712937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CiwGAN and fiwGAN: Encoding information in acoustic data to model lexical learning with Generative Adversarial Networks.
    Beguš G
    Neural Netw; 2021 Jul; 139():305-325. PubMed ID: 33873122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ANIMAL-SPOT enables animal-independent signal detection and classification using deep learning.
    Bergler C; Smeele SQ; Tyndel SA; Barnhill A; Ortiz ST; Kalan AK; Cheng RX; Brinkløv S; Osiecka AN; Tougaard J; Jakobsen F; Wahlberg M; Nöth E; Maier A; Klump BC
    Sci Rep; 2022 Dec; 12(1):21966. PubMed ID: 36535999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A deep learning approach for detecting drill bit failures from a small sound dataset.
    Tran T; Pham NT; Lundgren J
    Sci Rep; 2022 Jun; 12(1):9623. PubMed ID: 35688892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active learning for bird sound classification via a kernel-based extreme learning machine.
    Qian K; Zhang Z; Baird A; Schuller B
    J Acoust Soc Am; 2017 Oct; 142(4):1796. PubMed ID: 29092546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Audio-Based Drone Detection and Identification Using Deep Learning Techniques with Dataset Enhancement through Generative Adversarial Networks.
    Al-Emadi S; Al-Ali A; Al-Ali A
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational bioacoustics with deep learning: a review and roadmap.
    Stowell D
    PeerJ; 2022; 10():e13152. PubMed ID: 35341043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.