These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 34345665)

  • 1. Rapid Optimization of Photoredox Reactions for Continuous-Flow Systems Using Microscale Batch Technology.
    González-Esguevillas M; Fernández DF; Rincón JA; Barberis M; de Frutos O; Mateos C; García-Cerrada S; Agejas J; MacMillan DWC
    ACS Cent Sci; 2021 Jul; 7(7):1126-1134. PubMed ID: 34345665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Evolution of Chemical High-Throughput Experimentation To Address Challenging Problems in Pharmaceutical Synthesis.
    Krska SW; DiRocco DA; Dreher SD; Shevlin M
    Acc Chem Res; 2017 Dec; 50(12):2976-2985. PubMed ID: 29172435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Throughput Optimization of Photochemical Reactions using Segmented-Flow Nanoelectrospray-Ionization Mass Spectrometry.
    Sun AC; Steyer DJ; Robinson RI; Ginsburg-Moraff C; Plummer S; Gao J; Tucker JW; Alpers D; Stephenson CRJ; Kennedy RT
    Angew Chem Int Ed Engl; 2023 Jul; 62(28):e202301664. PubMed ID: 36940229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unlocking the Potential of High-Throughput Experimentation for Electrochemistry with a Standardized Microscale Reactor.
    Rein J; Annand JR; Wismer MK; Fu J; Siu JC; Klapars A; Strotman NA; Kalyani D; Lehnherr D; Lin S
    ACS Cent Sci; 2021 Aug; 7(8):1347-1355. PubMed ID: 34471679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrahigh-Throughput Experimentation for Information-Rich Chemical Synthesis.
    Mahjour B; Shen Y; Cernak T
    Acc Chem Res; 2021 May; 54(10):2337-2346. PubMed ID: 33891404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feedback in Flow for Accelerated Reaction Development.
    Reizman BJ; Jensen KF
    Acc Chem Res; 2016 Sep; 49(9):1786-96. PubMed ID: 27525813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Material-Efficient Microfluidic Platform for Exploratory Studies of Visible-Light Photoredox Catalysis.
    Coley CW; Abolhasani M; Lin H; Jensen KF
    Angew Chem Int Ed Engl; 2017 Aug; 56(33):9847-9850. PubMed ID: 28651035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous Heterogeneous Photocatalysis in Serial Micro-Batch Reactors.
    Pieber B; Shalom M; Antonietti M; Seeberger PH; Gilmore K
    Angew Chem Int Ed Engl; 2018 Jul; 57(31):9976-9979. PubMed ID: 29377383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High Throughput Experimentation Using DESI-MS to Guide Continuous-Flow Synthesis.
    Loren BP; Ewan HS; Avramova L; Ferreira CR; Sobreira TJP; Yammine K; Liao H; Cooks RG; Thompson DH
    Sci Rep; 2019 Oct; 9(1):14745. PubMed ID: 31611590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Utilization of High-Throughput Experimentation (HTE) and ChemBeads Toward the Development of an Aryl Bromide and Benzyl Bromide Photoredox Cross-Electrophile Coupling.
    Glogowski MP; Cercizi N; Lynch-Colameta T; Ridgers LH; Phelan JP; Rowley AM; Rauch MP
    Org Lett; 2024 Mar; 26(12):2420-2424. PubMed ID: 38498905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Development of Visible-Light Photoredox Catalysis in Flow.
    Garlets ZJ; Nguyen JD; Stephenson CR
    Isr J Chem; 2014 Apr; 54(4):351-360. PubMed ID: 25484447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. When Light Meets Nitrogen-Centered Radicals: From Reagents to Catalysts.
    Yu XY; Zhao QQ; Chen J; Xiao WJ; Chen JR
    Acc Chem Res; 2020 May; 53(5):1066-1083. PubMed ID: 32286794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Multifunctional Microfluidic Platform for High-Throughput Experimentation of Electroorganic Chemistry.
    Mo Y; Rughoobur G; Nambiar AMK; Zhang K; Jensen KF
    Angew Chem Int Ed Engl; 2020 Nov; 59(47):20890-20894. PubMed ID: 32767545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Translating Planar Heterocycles into Three-Dimensional Analogs by Photoinduced Hydrocarboxylation.
    Mikhael M; Alektiar SN; Yeung CS; Wickens ZK
    Angew Chem Int Ed Engl; 2023 Jul; 62(30):e202303264. PubMed ID: 37199340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation of Oxyphosphonium Ions by Photoredox/Cobaloxime Catalysis for Scalable Amide and Peptide Synthesis in Batch and Continuous-Flow.
    Su J; Mo JN; Chen X; Umanzor A; Zhang Z; Houk KN; Zhao J
    Angew Chem Int Ed Engl; 2022 Jan; 61(5):e202112668. PubMed ID: 34783121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utilization of Stop-flow Micro-tubing Reactors for the Development of Organic Transformations.
    Toh RW; Li JS; Wu J
    J Vis Exp; 2018 Jan; (131):. PubMed ID: 29364262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid trifluoromethylation and perfluoroalkylation of five-membered heterocycles by photoredox catalysis in continuous flow.
    Straathof NJ; Gemoets HP; Wang X; Schouten JC; Hessel V; Noël T
    ChemSusChem; 2014 Jun; 7(6):1612-7. PubMed ID: 24706388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pro-aromatic Dihydroquinazolinones - From Multigram Synthesis to Reagents for Gram-scale Metallaphotoredox Reactions.
    Tsai ZN; Li LY; Paculba AS; Miñoza S; Tsao YT; Lin PS; Liao HH
    Chem Asian J; 2024 Feb; 19(3):e202301004. PubMed ID: 38102804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. At the Speed of Light: The Systematic Implementation of Photoredox Cross-Coupling Reactions for Medicinal Chemistry Research.
    Gesmundo NJ; Rago AJ; Young JM; Keess S; Wang Y
    J Org Chem; 2024 Mar; ():. PubMed ID: 38442262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carboxylic Acids as Adaptive Functional Groups in Metallaphotoredox Catalysis.
    Beil SB; Chen TQ; Intermaggio NE; MacMillan DWC
    Acc Chem Res; 2022 Dec; 55(23):3481-3494. PubMed ID: 36472093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.