BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 34345861)

  • 1. Carcinogenicity of fibrous glaucophane: How should we fill the data gaps?
    Wylie AG; Korchevskiy AA
    Curr Res Toxicol; 2021; 2():202-203. PubMed ID: 34345861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Letter to the Editor: Comments on the paper of Wylie and Korchevskiy - Carcinogenicity of fibrous glaucophane: How should we fill the data gaps?
    Gualtieri AF; Di Giuseppe D
    Curr Res Toxicol; 2022; 3():100063. PubMed ID: 35072111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An evaluation of the risks of lung cancer and mesothelioma from exposure to amphibole cleavage fragments.
    Gamble JF; Gibbs GW
    Regul Toxicol Pharmacol; 2008 Oct; 52(1 Suppl):S154-86. PubMed ID: 18396365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro toxicity of fibrous glaucophane.
    Gualtieri AF; Zoboli A; Filaferro M; Benassi M; Scarfì S; Mirata S; Avallone R; Vitale G; Bailey M; Harper M; Di Giuseppe D
    Toxicology; 2021 Apr; 454():152743. PubMed ID: 33675871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of asbestiform glaucophane-winchite in the Franciscan Complex blueschist, northern Diablo Range, California.
    Erskine BG; Bailey M
    Toxicol Appl Pharmacol; 2018 Dec; 361():3-13. PubMed ID: 30240695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dimensions of elongate mineral particles and cancer: A review.
    Wylie AG; Korchevskiy AA
    Environ Res; 2023 Aug; 230():114688. PubMed ID: 36965798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization and assessment of the potential toxicity/pathogenicity of fibrous glaucophane.
    Di Giuseppe D; Harper M; Bailey M; Erskine B; Della Ventura G; Ardit M; Pasquali L; Tomaino G; Ray R; Mason H; Dyar MD; Hanuskova M; Giacobbe C; Zoboli A; Gualtieri AF
    Environ Res; 2019 Nov; 178():108723. PubMed ID: 31539822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling mesothelioma risk factors from amphibole fiber dimensionality: mineralogical and epidemiological perspective.
    Wylie AG; Korchevskiy A; Segrave AM; Duane A
    J Appl Toxicol; 2020 Apr; 40(4):515-524. PubMed ID: 32040984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Empirical model of mesothelioma potency factors for different mineral fibers based on their chemical composition and dimensionality.
    Korchevskiy A; Rasmuson JO; Rasmuson EJ
    Inhal Toxicol; 2019 Apr; 31(5):180-191. PubMed ID: 31328588
    [No Abstract]   [Full Text] [Related]  

  • 10. Bridging the gap between toxicity and carcinogenicity of mineral fibres by connecting the fibre crystal-chemical and physical parameters to the key characteristics of cancer.
    Gualtieri AF
    Curr Res Toxicol; 2021; 2():42-52. PubMed ID: 34345849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measuring EMPs in the lung what can be measured in the lung: Asbestiform minerals and cleavage fragments.
    Roggli VL
    Toxicol Appl Pharmacol; 2018 Dec; 361():14-17. PubMed ID: 29959999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Journey to the centre of the lung. The perspective of a mineralogist on the carcinogenic effects of mineral fibres in the lungs.
    Gualtieri AF
    J Hazard Mater; 2023 Jan; 442():130077. PubMed ID: 36209608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Letter to the Editor: Epidemiology holds a key to the validation of toxicological models for elongate mineral particles.
    Wylie A; Korchevskiy A
    Curr Res Toxicol; 2022; 3():100062. PubMed ID: 35059647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dimensional determinants for the carcinogenic potency of elongate amphibole particles.
    Korchevskiy AA; Wylie AG
    Inhal Toxicol; 2021; 33(6-8):244-259. PubMed ID: 34612763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of asbestos fiber potency and elongate mineral particle (EMP) potency for mesothelioma in humans.
    Garabrant DH; Pastula ST
    Toxicol Appl Pharmacol; 2018 Dec; 361():127-136. PubMed ID: 30077661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exposures estimates of the Wittenoom mining workforce and town residents - Implications associated with risk estimation for persons exposed to asbestiform riebeckite.
    Rogers AJ
    Toxicol Appl Pharmacol; 2018 Dec; 361():168-170. PubMed ID: 30563645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Are airborne refractory ceramic fibers similar to asbestos in their carcinogenicity?
    Walker AM; Maxim LD; Utell MJ
    Inhal Toxicol; 2012 Jun; 24(7):416-24. PubMed ID: 22642290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mode of action of fibrous amphiboles: the case of Biancavilla (Sicily, Italy).
    Ballan G; Del Brocco A; Loizzo S; Fabbri A; Maroccia Z; Fiorentini C; Travaglione S
    Ann Ist Super Sanita; 2014; 50(2):133-8. PubMed ID: 24968911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of fibre-induced superoxide release from alveolar macrophages and induction of superoxide dismutase in the lungs of rats inhaling crocidolite.
    Mossman BT; Hansen K; Marsh JP; Brew ME; Hill S; Bergeron M; Petruska J
    IARC Sci Publ; 1989; (90):81-92. PubMed ID: 2545620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The stability of subducted glaucophane with the Earth's secular cooling.
    Bang Y; Hwang H; Kim T; Cynn H; Park Y; Jung H; Park C; Popov D; Prakapenka VB; Wang L; Liermann HP; Irifune T; Mao HK; Lee Y
    Nat Commun; 2021 Mar; 12(1):1496. PubMed ID: 33674600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.