These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 34346326)

  • 1. Why is calcite a strong phosphorus sink in freshwater? Investigating the adsorption mechanism using batch experiments and surface complexation modeling.
    Flower H; Rains M; Taşcı Y; Zhang JZ; Trout K; Lewis D; Das A; Dalton R
    Chemosphere; 2022 Jan; 286(Pt 1):131596. PubMed ID: 34346326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of sediment capping with active barrier systems (ABS) using calcite/zeolite mixtures to simultaneously manage phosphorus and ammonium release.
    Lin J; Zhan Y; Zhu Z
    Sci Total Environ; 2011 Jan; 409(3):638-46. PubMed ID: 21112615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nutrient dynamics in a lowland stream impacted by sewage effluent: Great Ouse, England.
    House WA; Denison FH
    Sci Total Environ; 1997 Oct; 205(1):25-49. PubMed ID: 9352669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proton/calcium ion exchange behavior of calcite.
    Villegas-Jiménez A; Mucci A; Paquette J
    Phys Chem Chem Phys; 2009 Oct; 11(39):8895-912. PubMed ID: 20449036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effectiveness and mechanism of aluminum/iron co-modified calcite capping and amendment for controlling phosphorus release from sediments.
    Lei J; Lin J; Zhan Y; Zhang Z; Ma J
    J Environ Manage; 2021 Nov; 298():113471. PubMed ID: 34358942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and Surface Complexation at the Calcite(104)-Water Interface.
    Heberling F; Klačić T; Raiteri P; Gale JD; Eng PJ; Stubbs JE; Gil-Díaz T; Begović T; Lützenkirchen J
    Environ Sci Technol; 2021 Sep; 55(18):12403-12413. PubMed ID: 34478280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characteristics and mechanisms of cadmium adsorption onto biogenic aragonite shells-derived biosorbent: Batch and column studies.
    Van HT; Nguyen LH; Nguyen VD; Nguyen XH; Nguyen TH; Nguyen TV; Vigneswaran S; Rinklebe J; Tran HN
    J Environ Manage; 2019 Jul; 241():535-548. PubMed ID: 30318157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uncertainty and variability in laboratory derived sorption parameters of sediments from a uranium in situ recovery site.
    Dangelmayr MA; Reimus PW; Johnson RH; Clay JT; Stone JJ
    J Contam Hydrol; 2018 Jun; 213():28-39. PubMed ID: 29691066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomistic simulations of calcium uranyl(VI) carbonate adsorption on calcite and stepped-calcite surfaces.
    Doudou S; Vaughan DJ; Livens FR; Burton NA
    Environ Sci Technol; 2012 Jul; 46(14):7587-94. PubMed ID: 22642750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The adsorption/desorption of phosphorus in freshwater sediments from buffer zones: the effects of sediment concentration and pH.
    Zhang L; Du Y; Du C; Xu M; Loáiciga HA
    Environ Monit Assess; 2016 Jan; 188(1):13. PubMed ID: 26638155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lake restoration by hypolimnetic Ca(OH)2 treatment: impact on phosphorus sedimentation and release from sediment.
    Dittrich M; Gabriel O; Rutzen C; Koschel R
    Sci Total Environ; 2011 Mar; 409(8):1504-15. PubMed ID: 21292312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of calcite and dissolved calcium on uranium(VI) sorption to a hanford subsurface sediment.
    Dong W; Ball WP; Liu C; Wang Z; Stone AT; Bai J; Zachara JM
    Environ Sci Technol; 2005 Oct; 39(20):7949-55. PubMed ID: 16295860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Remobilisation of 109Cd, 65Zn and 54Mn from freshwater-labelled river sediments when mixed with seawater.
    Standring WJ; Oughton DH; Salbu B
    Environ Int; 2002 Jul; 28(3):185-95. PubMed ID: 12222615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphate adsorption characteristics at the sediment-water interface and phosphorus fractions in Nansi Lake, China, and its main inflow rivers.
    An WC; Li XM
    Environ Monit Assess; 2009 Jan; 148(1-4):173-84. PubMed ID: 18344009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of phosphate from solution by adsorption and precipitation of calcium phosphate onto monohydrocalcite.
    Yagi S; Fukushi K
    J Colloid Interface Sci; 2012 Oct; 384(1):128-36. PubMed ID: 22832093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative study on adsorption of crude oil and spent engine oil from seawater and freshwater using algal biomass.
    Boleydei H; Mirghaffari N; Farhadian O
    Environ Sci Pollut Res Int; 2018 Jul; 25(21):21024-21035. PubMed ID: 29766434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solution NMR investigation of phytic acid adsorption mechanisms at the calcite-water interface.
    Chen A; Zhu L; Arai Y
    Sci Total Environ; 2022 Sep; 840():156700. PubMed ID: 35709996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Efficiency and mechanism of compound barrier with HCl modification zeolite and calcite to control nitrogen and phosphorus release from sediments].
    Lin JW; Zhu ZL; Zhao JF; Zhan YH; Ma HM
    Huan Jing Ke Xue; 2007 Mar; 28(3):551-5. PubMed ID: 17633632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New Insights into Calcite Dissolution Mechanisms under Water, Proton, or Carbonic Acid-Dominated Conditions.
    Kim KT; Henkelman G; Katz LE; Werth CJ
    Environ Sci Technol; 2024 Jul; 58(26):11331-11341. PubMed ID: 38907708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An efficient phosphorus scavenging from aqueous solution using magnesiothermally modified bio-calcite.
    Ahmad M; Ahmad M; Usman ARA; Al-Faraj AS; Ok YS; Hussain Q; Abduljabbar AS; Al-Wabel MI
    Environ Technol; 2018 Jul; 39(13):1638-1649. PubMed ID: 28545323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.