These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 34346334)

  • 41. Electrochemical pilot-scale plant for oil field produced wastewater by M/C/Fe electrodes for injection.
    Ma H; Wang B
    J Hazard Mater; 2006 May; 132(2-3):237-43. PubMed ID: 16300884
    [TBL] [Abstract][Full Text] [Related]  

  • 42. An Electrochemical Strategy for Simultaneous Heavy Metal Complexes Wastewater Treatment and Resource Recovery.
    Li M; Chen N; Shang H; Ling C; Wei K; Zhao S; Zhou B; Jia F; Ai Z; Zhang L
    Environ Sci Technol; 2022 Aug; 56(15):10945-10953. PubMed ID: 35830297
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mechanistic insight into pH-dependent adsorption and coprecipitation of chelated heavy metals by in-situ formed iron (oxy)hydroxides.
    Yang Z; Ma J; Liu F; Zhang H; Ma X; He D
    J Colloid Interface Sci; 2022 Feb; 608(Pt 1):864-872. PubMed ID: 34785461
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Removal of Persistent Organic Contaminants by Electrochemically Activated Sulfate.
    Farhat A; Keller J; Tait S; Radjenovic J
    Environ Sci Technol; 2015 Dec; 49(24):14326-33. PubMed ID: 26572594
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Electrochemical processes for the treatment of contaminant-rich wastewater: A comprehensive review.
    Brião GV; da Costa TB; Antonelli R; Costa JM
    Chemosphere; 2024 May; 355():141884. PubMed ID: 38575083
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Synergistic adsorption of Cd(II) and As(V) on birnessite under electrochemical control.
    Yang X; Peng Q; Liu L; Tan W; Qiu G; Liu C; Dang Z
    Chemosphere; 2020 May; 247():125822. PubMed ID: 31927232
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Simultaneous removal of ammonia and phosphate by electro-oxidation and electrocoagulation using RuO
    Sun D; Hong X; Wu K; Hui KS; Du Y; Hui KN
    Water Res; 2020 Feb; 169():115239. PubMed ID: 31706129
    [TBL] [Abstract][Full Text] [Related]  

  • 48. One-Step Treatment of Phosphite-Laden Wastewater: A Single Electrochemical Reactor Integrating Superoxide Radical-Induced Oxidation and Electrocoagulation.
    Liang S; Zheng W; Zhu L; Duan W; Wei C; Feng C
    Environ Sci Technol; 2019 May; 53(9):5328-5336. PubMed ID: 30998005
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Chemical composition and direct electrochemical oxidation of table olive processing wastewater using high oxidation power anodes.
    Gargouri B; Gargouri OD; Khmakhem I; Ammar S; Abdelhèdi R; Bouaziz M
    Chemosphere; 2017 Jan; 166():363-371. PubMed ID: 27700999
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Liquid crystal display electrode-assisted bio-electroperoxone treatment train for the abatement of organic contaminants in a pharmaceutical wastewater.
    Srinivasan R; Nambi IM
    Environ Sci Pollut Res Int; 2020 Aug; 27(24):29737-29748. PubMed ID: 31808091
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ecotoxicity comparison of organic contaminants and heavy metals using Vibrio-qinghaiensis sp.-Q67.
    Ma XY; Wang XC
    Water Sci Technol; 2013; 67(10):2221-7. PubMed ID: 23676391
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mixed industrial wastewater treatment by combined electrochemical advanced oxidation and biological processes.
    Popat A; Nidheesh PV; Anantha Singh TS; Suresh Kumar M
    Chemosphere; 2019 Dec; 237():124419. PubMed ID: 31356998
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A novel electrocoagulation process with centrifugal electrodes for wastewater treatment: Electrochemical behavior of anode and kinetics of heavy metal removal.
    Yu Y; Zhong Y; Sun W; Xie J; Wang M; Guo Z
    Chemosphere; 2023 Jan; 310():136862. PubMed ID: 36243084
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Emerging organic contaminants in wastewater: Understanding electrochemical reactors for triclosan and its by-products degradation.
    Magro C; Mateus EP; Paz-Garcia JM; Ribeiro AB
    Chemosphere; 2020 May; 247():125758. PubMed ID: 31931309
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Various wastewaters treatment by sono-electrocoagulation process: A comprehensive review of operational parameters and future outlook.
    Moradi M; Vasseghian Y; Arabzade H; Mousavi Khaneghah A
    Chemosphere; 2021 Jan; 263():128314. PubMed ID: 33297249
    [TBL] [Abstract][Full Text] [Related]  

  • 56. An overview on combined electrocoagulation-degradation processes for the effective treatment of water and wastewater.
    Nidheesh PV; Scaria J; Babu DS; Kumar MS
    Chemosphere; 2021 Jan; 263():127907. PubMed ID: 32835972
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Non-selective rapid electro-oxidation of persistent, refractory VOCs in industrial wastewater using a highly catalytic and dimensionally stable IrPd/Ti composite electrode.
    Cho WC; Poo KM; Mohamed HO; Kim TN; Kim YS; Hwang MH; Jung DW; Chae KJ
    Chemosphere; 2018 Sep; 206():483-490. PubMed ID: 29778073
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Electrolytic manipulation of persulfate reactivity by iron electrodes for trichloroethylene degradation in groundwater.
    Yuan S; Liao P; Alshawabkeh AN
    Environ Sci Technol; 2014; 48(1):656-63. PubMed ID: 24328192
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hydroxyl radicals in anodic oxidation systems: generation, identification and quantification.
    Xie J; Zhang C; Waite TD
    Water Res; 2022 Jun; 217():118425. PubMed ID: 35429884
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Sequential electrochemical treatment of dairy wastewater using aluminum and DSA-type anodes.
    Borbón B; Oropeza-Guzman MT; Brillas E; Sirés I
    Environ Sci Pollut Res Int; 2014; 21(14):8573-84. PubMed ID: 24671400
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.