These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 34346350)

  • 21. Capacity of an ecologically key urchin to recover from extreme events: Physiological impacts of heatwaves and the road to recovery.
    Minuti JJ; Byrne M; Hemraj DA; Russell BD
    Sci Total Environ; 2021 Sep; 785():147281. PubMed ID: 33933766
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Basal resistance enhances warming tolerance of alien over indigenous species across latitude.
    Janion-Scheepers C; Phillips L; Sgrò CM; Duffy GA; Hallas R; Chown SL
    Proc Natl Acad Sci U S A; 2018 Jan; 115(1):145-150. PubMed ID: 29255020
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Warming and temperature variability determine the performance of two invertebrate predators.
    Morón Lugo SC; Baumeister M; Nour OM; Wolf F; Stumpp M; Pansch C
    Sci Rep; 2020 Apr; 10(1):6780. PubMed ID: 32321937
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Could behaviour and not physiological thermal tolerance determine winter survival of aphids in cereal fields?
    Alford L; Andrade TO; Georges R; Burel F; van Baaren J
    PLoS One; 2014; 9(12):e114982. PubMed ID: 25490555
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of marine heatwave conditions across the metamorphic transition to the juvenile sea urchin (Heliocidaris erythrogramma).
    Gall ML; Holmes SP; Campbell H; Byrne M
    Mar Pollut Bull; 2021 Feb; 163():111914. PubMed ID: 33385800
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The added costs of winter ocean warming for metabolism, arm regeneration and survival in the brittle star Ophionereis schayeri.
    Christensen AB; Taylor G; Lamare M; Byrne M
    J Exp Biol; 2023 Feb; 226(3):. PubMed ID: 36651231
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adapt, move or die - how will tropical coral reef fishes cope with ocean warming?
    Habary A; Johansen JL; Nay TJ; Steffensen JF; Rummer JL
    Glob Chang Biol; 2017 Feb; 23(2):566-577. PubMed ID: 27593976
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Extreme temperature impairs growth and productivity in a common tropical marine copepod.
    Doan NX; Vu MTT; Pham HQ; Wisz MS; Nielsen TG; Dinh KV
    Sci Rep; 2019 Mar; 9(1):4550. PubMed ID: 30872725
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lake heatwaves under climate change.
    Woolway RI; Jennings E; Shatwell T; Golub M; Pierson DC; Maberly SC
    Nature; 2021 Jan; 589(7842):402-407. PubMed ID: 33473224
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Integrating metabolic performance, thermal tolerance, and plasticity enables for more accurate predictions on species vulnerability to acute and chronic effects of global warming.
    Magozzi S; Calosi P
    Glob Chang Biol; 2015 Jan; 21(1):181-94. PubMed ID: 25155644
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Marine heatwaves and optimal temperatures for microbial assemblage activity.
    Joint I; Smale DA
    FEMS Microbiol Ecol; 2017 Feb; 93(2):. PubMed ID: 27940643
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bacterioplankton Metacommunity Processes across Thermal Gradients: Weaker Species Sorting but Stronger Niche Segregation in Summer than in Winter in a Subtropical Bay.
    Ren L; Song X; He D; Wang J; Tan M; Xia X; Li G; Tan Y; Wu QL
    Appl Environ Microbiol; 2019 Jan; 85(2):. PubMed ID: 30367007
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Disentangling the impacts of heat wave magnitude, duration and timing on the structure and diversity of sessile marine assemblages.
    Smale DA; Yunnie AL; Vance T; Widdicombe S
    PeerJ; 2015; 3():e863. PubMed ID: 25834773
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Insect overwintering in a changing climate.
    Bale JS; Hayward SA
    J Exp Biol; 2010 Mar; 213(6):980-94. PubMed ID: 20190123
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Greater vulnerability to warming of marine versus terrestrial ectotherms.
    Pinsky ML; Eikeset AM; McCauley DJ; Payne JL; Sunday JM
    Nature; 2019 May; 569(7754):108-111. PubMed ID: 31019302
    [TBL] [Abstract][Full Text] [Related]  

  • 36. No trade-off between high and low temperature tolerance in a winter acclimatized Danish Drosophila subobscura population.
    Sørensen JG; Kristensen TN; Loeschcke V; Schou MF
    J Insect Physiol; 2015 Jun; 77():9-14. PubMed ID: 25846012
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Response of foundation macrophytes to near-natural simulated marine heatwaves.
    Saha M; Barboza FR; Somerfield PJ; Al-Janabi B; Beck M; Brakel J; Ito M; Pansch C; Nascimento-Schulze JC; Jakobsson Thor S; Weinberger F; Sawall Y
    Glob Chang Biol; 2020 Feb; 26(2):417-430. PubMed ID: 31670451
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of seasonal acclimatization on action potentials and sarcolemmal K
    Badr A; Hassinen M; El-Sayed MF; Vornanen M
    Comp Biochem Physiol A Mol Integr Physiol; 2017 Mar; 205():15-27. PubMed ID: 28007664
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Climate change affects marine fishes through the oxygen limitation of thermal tolerance.
    Pörtner HO; Knust R
    Science; 2007 Jan; 315(5808):95-7. PubMed ID: 17204649
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Acclimation to low pH does not affect the thermal tolerance of
    Foo SA; Munari M; Gambi MC; Byrne M
    Biol Lett; 2022 Jun; 18(6):20220087. PubMed ID: 35642383
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.