These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 34346362)
1. 21st century precipitation and monsoonal shift over Pakistan and Upper Indus Basin (UIB) using high-resolution projections. Ali S; Reboita MS; Kiani RS Sci Total Environ; 2021 Nov; 797():149139. PubMed ID: 34346362 [TBL] [Abstract][Full Text] [Related]
2. Bias-corrected climate change projections over the Upper Indus Basin using a multi-model ensemble. Bashir J; Romshoo SA Environ Sci Pollut Res Int; 2023 May; 30(23):64517-64535. PubMed ID: 37071365 [TBL] [Abstract][Full Text] [Related]
3. Future climate projections using the LARS-WG6 downscaling model over Upper Indus Basin, Pakistan. Khan SF; Naeem UA Environ Monit Assess; 2023 Jun; 195(7):810. PubMed ID: 37284969 [TBL] [Abstract][Full Text] [Related]
5. Hydrological projections over the Upper Indus Basin at 1.5 °C and 2.0 °C temperature increase. Kiani RS; Ali S; Ashfaq M; Khan F; Muhammad S; Reboita MS; Farooqi A Sci Total Environ; 2021 Sep; 788():147759. PubMed ID: 34134357 [TBL] [Abstract][Full Text] [Related]
6. Water availability and response of Tarbela Reservoir under the changing climate in the Upper Indus Basin, Pakistan. Khan F Sci Rep; 2022 Sep; 12(1):15865. PubMed ID: 36151258 [TBL] [Abstract][Full Text] [Related]
7. Projected changes in temperature, precipitation and potential evapotranspiration across Indus River Basin at 1.5-3.0 °C warming levels using CMIP6-GCMs. Mondal SK; Tao H; Huang J; Wang Y; Su B; Zhai J; Jing C; Wen S; Jiang S; Chen Z; Jiang T Sci Total Environ; 2021 Oct; 789():147867. PubMed ID: 34052498 [TBL] [Abstract][Full Text] [Related]
8. Changes in the hydro-climatic regime of the Hunza Basin in the Upper Indus under CMIP6 climate change projections. Nazeer A; Maskey S; Skaugen T; McClain ME Sci Rep; 2022 Dec; 12(1):21442. PubMed ID: 36509796 [TBL] [Abstract][Full Text] [Related]
9. Evaluation and Future Projection of Extreme Climate Events in the Yellow River Basin and Yangtze River Basin in China Using Ensembled CMIP5 Models Data. Niu Z; Feng L; Chen X; Yi X Int J Environ Res Public Health; 2021 Jun; 18(11):. PubMed ID: 34205168 [TBL] [Abstract][Full Text] [Related]
10. Climate change and hydrological regime of the high-altitude Indus basin under extreme climate scenarios. Dahri ZH; Ludwig F; Moors E; Ahmad S; Ahmad B; Ahmad S; Riaz M; Kabat P Sci Total Environ; 2021 May; 768():144467. PubMed ID: 33454464 [TBL] [Abstract][Full Text] [Related]
11. Multi-model projections of precipitation extremes in Southeast Asia based on CORDEX-Southeast Asia simulations. Supari ; Tangang F; Juneng L; Cruz F; Chung JX; Ngai ST; Salimun E; Mohd MSF; Santisirisomboon J; Singhruck P; PhanVan T; Ngo-Duc T; Narisma G; Aldrian E; Gunawan D; Sopaheluwakan A Environ Res; 2020 May; 184():109350. PubMed ID: 32179268 [TBL] [Abstract][Full Text] [Related]
12. Projection of Future Extreme Precipitation and Flood Changes of the Jinsha River Basin in China Based on CMIP5 Climate Models. Yuan Z; Xu J; Wang Y Int J Environ Res Public Health; 2018 Nov; 15(11):. PubMed ID: 30413030 [TBL] [Abstract][Full Text] [Related]
13. Synoptic-scale precursors of landslides in the western Himalaya and Karakoram. Hunt KMR; Dimri AP Sci Total Environ; 2021 Jul; 776():145895. PubMed ID: 33647669 [TBL] [Abstract][Full Text] [Related]
14. Trend analysis of watershed-scale precipitation over Northern California by means of dynamically-downscaled CMIP5 future climate projections. Ishida K; Gorguner M; Ercan A; Trinh T; Kavvas ML Sci Total Environ; 2017 Aug; 592():12-24. PubMed ID: 28292670 [TBL] [Abstract][Full Text] [Related]
15. Spatial variation, source identification, and quality assessment of surface water geochemical composition in the Indus River Basin, Pakistan. Rehman Qaisar FU; Zhang F; Pant RR; Wang G; Khan S; Zeng C Environ Sci Pollut Res Int; 2018 May; 25(13):12749-12763. PubMed ID: 29470753 [TBL] [Abstract][Full Text] [Related]
16. Impacts of climate change on wheat phenology and yield in Indus Basin, Pakistan. Azmat M; Ilyas F; Sarwar A; Huggel C; Vaghefi SA; Hui T; Qamar MU; Bilal M; Ahmed Z Sci Total Environ; 2021 Oct; 790():148221. PubMed ID: 34380261 [TBL] [Abstract][Full Text] [Related]
17. Assessing the impacts of future climate change on the hydroclimatology of the Gediz Basin in Turkey by using dynamically downscaled CMIP5 projections. Gorguner M; Kavvas ML; Ishida K Sci Total Environ; 2019 Jan; 648():481-499. PubMed ID: 30121528 [TBL] [Abstract][Full Text] [Related]
18. Downscaled climate change projections with uncertainty assessment over India using a high resolution multi-model approach. Kumar P; Wiltshire A; Mathison C; Asharaf S; Ahrens B; Lucas-Picher P; Christensen JH; Gobiet A; Saeed F; Hagemann S; Jacob D Sci Total Environ; 2013 Dec; 468-469 Suppl():S18-30. PubMed ID: 23541400 [TBL] [Abstract][Full Text] [Related]
19. Climate change adaptation strategies for sustainable water management in the Indus basin of Pakistan. Muzammil M; Zahid A; Farooq U; Saddique N; Breuer L Sci Total Environ; 2023 Jun; 878():163143. PubMed ID: 36996978 [TBL] [Abstract][Full Text] [Related]
20. Present-day and future projection of East Asian summer monsoon in Coupled Model Intercomparison Project 6 simulations. Sun MA; Sung HM; Kim J; Lee JH; Shim S; Byun YH PLoS One; 2022; 17(6):e0269267. PubMed ID: 35658064 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]