These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 34346541)

  • 1. Electrochemical Oxidative Dehydrogenation of Ethane to Ethylene in a Solid Oxide Electrolyzer.
    Ye L; Duan X; Xie K
    Angew Chem Int Ed Engl; 2021 Sep; 60(40):21746-21750. PubMed ID: 34346541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interfacial Enhancement by γ-Al
    Song Y; Lin L; Feng W; Zhang X; Dong Q; Li X; Lv H; Liu Q; Yang F; Liu Z; Wang G; Bao X
    Angew Chem Int Ed Engl; 2019 Nov; 58(45):16043-16046. PubMed ID: 31468666
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective Oxidative Coupling of Methane to Ethylene in a Solid Oxide Electrolyser Based on Porous Single-Crystalline CeO
    Ye L; Shang Z; Xie K
    Angew Chem Int Ed Engl; 2022 Aug; 61(32):e202207211. PubMed ID: 35670138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-Assembly Dual Active Site Nanocomposite Anode Ce
    Zhang S; Xu C; Ren R; Qiao J; Wang Z; Sun W; Sun K
    ACS Appl Mater Interfaces; 2024 Jan; 16(3):3451-3459. PubMed ID: 38194627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile Dehydrogenation of Ethane on the IrO
    Bian Y; Kim M; Li T; Asthagiri A; Weaver JF
    J Am Chem Soc; 2018 Feb; 140(7):2665-2672. PubMed ID: 29376362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical conversion of methane to ethylene in a solid oxide electrolyzer.
    Zhu C; Hou S; Hu X; Lu J; Chen F; Xie K
    Nat Commun; 2019 Mar; 10(1):1173. PubMed ID: 30862779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active sites for tandem reactions of CO
    Yan B; Yao S; Kattel S; Wu Q; Xie Z; Gomez E; Liu P; Su D; Chen JG
    Proc Natl Acad Sci U S A; 2018 Aug; 115(33):8278-8283. PubMed ID: 30061384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CO2 emission free co-generation of energy and ethylene in hydrocarbon SOFC reactors with a dehydrogenation anode.
    Fu XZ; Lin JY; Xu S; Luo JL; Chuang KT; Sanger AR; Krzywicki A
    Phys Chem Chem Phys; 2011 Nov; 13(43):19615-23. PubMed ID: 21984357
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Porous Single-crystalline Centimeter-sized α-Al
    Li X; Li W; Zhang J; Yin W; Xia Y; Xie K
    Angew Chem Int Ed Engl; 2024 Jan; 63(4):e202315274. PubMed ID: 38050771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photocatalytic ethylene production by oxidative dehydrogenation of ethane with dioxygen on ZnO-supported PdZn intermetallic nanoparticles.
    Wang P; Zhang X; Shi R; Zhao J; Waterhouse GIN; Tang J; Zhang T
    Nat Commun; 2024 Jan; 15(1):789. PubMed ID: 38278813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Twisted Surfaces in Porous Single Crystals to Deliver Enhanced Catalytic Activity and Stability.
    Lin G; Li H; Xie K
    Angew Chem Int Ed Engl; 2020 Sep; 59(38):16440-16444. PubMed ID: 32485028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Niobium phosphates as new highly selective catalysts for the oxidative dehydrogenation of ethane.
    Weng W; Davies M; Whiting G; Solsona B; Kiely CJ; Carley AF; Taylor SH
    Phys Chem Chem Phys; 2011 Oct; 13(38):17395-404. PubMed ID: 21881631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High selectivity of oxidative dehydrogenation of ethane to ethylene in an oxygen permeable membrane reactor.
    Wang H; Cong Y; Yang W
    Chem Commun (Camb); 2002 Jul; (14):1468-9. PubMed ID: 12189847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Porous Single-Crystalline Monolith to Enhance Catalytic Activity and Stability.
    Yu X; Cheng F; Duan X; Xie K
    Research (Wash D C); 2022; 2022():9861518. PubMed ID: 35928301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying Different Types of Catalysts for CO2 Reduction by Ethane through Dry Reforming and Oxidative Dehydrogenation.
    Porosoff MD; Myint MN; Kattel S; Xie Z; Gomez E; Liu P; Chen JG
    Angew Chem Int Ed Engl; 2015 Dec; 54(51):15501-5. PubMed ID: 26554872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A molten carbonate shell modified perovskite redox catalyst for anaerobic oxidative dehydrogenation of ethane.
    Gao Y; Wang X; Liu J; Huang C; Zhao K; Zhao Z; Wang X; Li F
    Sci Adv; 2020 Apr; 6(17):eaaz9339. PubMed ID: 32426468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidative dehydrogenation of ethane on dynamically rearranging supported chloride catalysts.
    Gärtner CA; van Veen AC; Lercher JA
    J Am Chem Soc; 2014 Sep; 136(36):12691-701. PubMed ID: 25118821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced NiO Dispersion on a High Surface Area Pillared Heterostructure Covered by Niobium Leads to Optimal Behaviour in the Oxidative Dehydrogenation of Ethane.
    Rodríguez-Castellón E; Delgado D; Dejoz A; Vázquez I; Agouram S; Cecilia JA; Solsona B; López Nieto JM
    Chemistry; 2020 Jul; 26(42):9371-9381. PubMed ID: 32301531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Green synthesis of Ni-Nb oxide catalysts for low-temperature oxidative dehydrogenation of ethane.
    Zhu H; Rosenfeld DC; Anjum DH; Caps V; Basset JM
    ChemSusChem; 2015 Apr; 8(7):1254-63. PubMed ID: 25755222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of the Au-Ti Active Site of the Titanosilicate MWW Zeolite on the Catalytic Activity of Ethane Dehydrogenation in the Presence of O
    Meng X; Wu G; Cheng X; Wang J; Peng A; Liang T; Jin F
    Langmuir; 2023 Mar; 39(12):4427-4438. PubMed ID: 36913507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.