These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 34346674)

  • 1. Phosphorylation of a Human Microprotein Promotes Dissociation of Biomolecular Condensates.
    Na Z; Luo Y; Cui DS; Khitun A; Smelyansky S; Loria JP; Slavoff SA
    J Am Chem Soc; 2021 Aug; 143(32):12675-12687. PubMed ID: 34346674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The NBDY Microprotein Regulates Cellular RNA Decapping.
    Na Z; Luo Y; Schofield JA; Smelyansky S; Khitun A; Muthukumar S; Valkov E; Simon MD; Slavoff SA
    Biochemistry; 2020 Oct; 59(42):4131-4142. PubMed ID: 33059440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ATP Acts as a Hydrotrope to Regulate the Phase Separation of NBDY Clusters.
    Liu F; Wang J
    JACS Au; 2023 Sep; 3(9):2578-2585. PubMed ID: 37772172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biological soft matter: intrinsically disordered proteins in liquid-liquid phase separation and biomolecular condensates.
    Fonin AV; Antifeeva IA; Kuznetsova IM; Turoverov KK; Zaslavsky BY; Kulkarni P; Uversky VN
    Essays Biochem; 2022 Dec; 66(7):831-847. PubMed ID: 36350034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational Dynamics of Intrinsically Disordered Proteins Regulate Biomolecular Condensate Chemistry.
    Abyzov A; Blackledge M; Zweckstetter M
    Chem Rev; 2022 Mar; 122(6):6719-6748. PubMed ID: 35179885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unravelling the microscopic characteristics of intrinsically disordered proteins upon liquid-liquid phase separation.
    Wu S; Wen J; Perrett S
    Essays Biochem; 2022 Dec; 66(7):891-900. PubMed ID: 36524527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A call to order: Examining structured domains in biomolecular condensates.
    Tibble RW; Gross JD
    J Magn Reson; 2023 Jan; 346():107318. PubMed ID: 36657879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accurate model of liquid-liquid phase behavior of intrinsically disordered proteins from optimization of single-chain properties.
    Tesei G; Schulze TK; Crehuet R; Lindorff-Larsen K
    Proc Natl Acad Sci U S A; 2021 Nov; 118(44):. PubMed ID: 34716273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theories for Sequence-Dependent Phase Behaviors of Biomolecular Condensates.
    Lin YH; Forman-Kay JD; Chan HS
    Biochemistry; 2018 May; 57(17):2499-2508. PubMed ID: 29509422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomolecular condensates formed by designer minimalistic peptides.
    Baruch Leshem A; Sloan-Dennison S; Massarano T; Ben-David S; Graham D; Faulds K; Gottlieb HE; Chill JH; Lampel A
    Nat Commun; 2023 Jan; 14(1):421. PubMed ID: 36702825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen-Bonded Network of Water in Phase-Separated Biomolecular Condensates.
    Joshi A; Avni A; Walimbe A; Rai SK; Sarkar S; Mukhopadhyay S
    J Phys Chem Lett; 2024 Aug; 15(30):7724-7734. PubMed ID: 39042834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microproteins transitioning into a new Phase: Defining the undefined.
    Sahgal A; Uversky V; Davé V
    Methods; 2023 Dec; 220():38-54. PubMed ID: 37890707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amphiphilic proteins coassemble into multiphasic condensates and act as biomolecular surfactants.
    Kelley FM; Favetta B; Regy RM; Mittal J; Schuster BS
    Proc Natl Acad Sci U S A; 2021 Dec; 118(51):. PubMed ID: 34916288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase Separation of Intrinsically Disordered Proteins.
    Posey AE; Holehouse AS; Pappu RV
    Methods Enzymol; 2018; 611():1-30. PubMed ID: 30471685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. What are the distinguishing features and size requirements of biomolecular condensates and their implications for RNA-containing condensates?
    Forman-Kay JD; Ditlev JA; Nosella ML; Lee HO
    RNA; 2022 Jan; 28(1):36-47. PubMed ID: 34772786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Initial heat analysis in dissociation isothermal titration calorimetry: An analytical tool for thermodynamic dissection of biomolecular condensates.
    Yun JN; Koh J
    Biochem Biophys Res Commun; 2022 May; 605():127-133. PubMed ID: 35325654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping subcellular localizations of unannotated microproteins and alternative proteins with MicroID.
    Na Z; Dai X; Zheng SJ; Bryant CJ; Loh KH; Su H; Luo Y; Buhagiar AF; Cao X; Baserga SJ; Chen S; Slavoff SA
    Mol Cell; 2022 Aug; 82(15):2900-2911.e7. PubMed ID: 35905735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microproteins-Discovery, structure, and function.
    Mohsen JJ; Martel AA; Slavoff SA
    Proteomics; 2023 Dec; 23(23-24):e2100211. PubMed ID: 37603371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nucleic Acids Modulate Liquidity and Dynamics of Artificial Membraneless Organelles.
    Liu J; Zhorabek F; Chau Y
    ACS Macro Lett; 2022 Apr; 11(4):562-567. PubMed ID: 35575335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intrinsically disordered sequences enable modulation of protein phase separation through distributed tyrosine motifs.
    Lin Y; Currie SL; Rosen MK
    J Biol Chem; 2017 Nov; 292(46):19110-19120. PubMed ID: 28924037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.