These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 34346682)

  • 1. Spontaneous Mode Switching of Self-Propelled Droplet Motion Induced by a Clock Reaction in the Belousov-Zhabotinsky Medium.
    Suematsu NJ; Mori Y; Amemiya T; Nakata S
    J Phys Chem Lett; 2021 Aug; 12(31):7526-7530. PubMed ID: 34346682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oscillation of Speed of a Self-Propelled Belousov-Zhabotinsky Droplet.
    Suematsu NJ; Mori Y; Amemiya T; Nakata S
    J Phys Chem Lett; 2016 Sep; 7(17):3424-8. PubMed ID: 27532330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interfacial Dynamics in the Spontaneous Motion of an Aqueous Droplet.
    Suematsu NJ; Saikusa K; Nagata T; Izumi S
    Langmuir; 2019 Sep; 35(35):11601-11607. PubMed ID: 31397577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-propelled motion switching in nematic liquid crystal droplets in aqueous surfactant solutions.
    Suga M; Suda S; Ichikawa M; Kimura Y
    Phys Rev E; 2018 Jun; 97(6-1):062703. PubMed ID: 30011466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of a product on spontaneous droplet motion driven by a chemical reaction of surfactant.
    Tanabe T; Ogasawara T; Suematsu NJ
    Phys Rev E; 2020 Aug; 102(2-1):023102. PubMed ID: 32942422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast-Moving Self-Propelled Droplets of a Nanocatalyzed Belousov-Zhabotinsky Reaction.
    Kumar DJP; Borkar C; Dayal P
    Langmuir; 2021 Nov; 37(43):12586-12595. PubMed ID: 34670083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning active emulsion dynamics via surfactants and topology.
    Thutupalli S; Herminghaus S
    Eur Phys J E Soft Matter; 2013 Aug; 36(8):91. PubMed ID: 23989755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of different self-propulsion types of oil droplets based on electrostatic interaction effects.
    Noguchi M; Yamada M; Sawada H
    RSC Adv; 2022 Jun; 12(29):18354-18362. PubMed ID: 35799924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Start of Micrometer-Sized Oil Droplet Motion through Generation of Surfactants.
    Kasuo Y; Kitahata H; Koyano Y; Takinoue M; Asakura K; Banno T
    Langmuir; 2019 Oct; 35(41):13351-13355. PubMed ID: 31550892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. pH-induced motion control of self-propelled oil droplets using a hydrolyzable gemini cationic surfactant.
    Miura S; Banno T; Tonooka T; Osaki T; Takeuchi S; Toyota T
    Langmuir; 2014 Jul; 30(27):7977-85. PubMed ID: 24934718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. pH-Sensitive self-propelled motion of oil droplets in the presence of cationic surfactants containing hydrolyzable ester linkages.
    Banno T; Kuroha R; Toyota T
    Langmuir; 2012 Jan; 28(2):1190-5. PubMed ID: 22149384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrodynamics of a confined active Belousov-Zhabotinsky droplet.
    Chaithanya KVS; Shenoy SA; Dayal P
    Phys Rev E; 2022 Dec; 106(6-2):065103. PubMed ID: 36671180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spontaneous mode-selection in the self-propelled motion of a solid/liquid composite driven by interfacial instability.
    Takabatake F; Magome N; Ichikawa M; Yoshikawa K
    J Chem Phys; 2011 Mar; 134(11):114704. PubMed ID: 21428653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-propelled oil droplets consuming "fuel" surfactant.
    Toyota T; Maru N; Hanczyc MM; Ikegami T; Sugawara T
    J Am Chem Soc; 2009 Apr; 131(14):5012-3. PubMed ID: 19351200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-propelled motion of a droplet induced by Marangoni-driven spreading.
    Chen YJ; Nagamine Y; Yoshikawa K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 2):016303. PubMed ID: 19658802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular System for the Division of Self-Propelled Oil Droplets by Component Feeding.
    Banno T; Toyota T
    Langmuir; 2015 Jun; 31(25):6943-7. PubMed ID: 26073277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quasi-elastic laser scattering for measuring inhomogeneous interfacial tension in non-equilibrium phenomena with convective flows.
    Nomoto T; Toyota T; Fujinami M
    Anal Sci; 2014; 30(7):707-16. PubMed ID: 25007928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mathematical model for self-propelled droplets driven by interfacial tension.
    Nagai KH; Tachibana K; Tobe Y; Kazama M; Kitahata H; Omata S; Nagayama M
    J Chem Phys; 2016 Mar; 144(11):114707. PubMed ID: 27004893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic monitoring of molecular interactions during surfactant-driven self-propelled droplet motion by high spatial resolution waveguide sensing.
    Farkas E; Dóra Kovács K; Szekacs I; Peter B; Lagzi I; Kitahata H; Suematsu NJ; Horvath R
    J Colloid Interface Sci; 2025 Jan; 677(Pt B):352-364. PubMed ID: 39151228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.