These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
296 related articles for article (PubMed ID: 34347092)
1. Spatiotemporal control of pathway sensors and cross-pathway feedback regulate a differentiation MAPK pathway in yeast. Prabhakar A; González B; Dionne H; Basu S; Cullen PJ J Cell Sci; 2021 Aug; 134(15):. PubMed ID: 34347092 [TBL] [Abstract][Full Text] [Related]
2. Functions for Cdc42p BEM adaptors in regulating a differentiation-type MAP kinase pathway. Basu S; González B; Li B; Kimble G; Kozminski KG; Cullen PJ Mol Biol Cell; 2020 Mar; 31(6):491-510. PubMed ID: 31940256 [TBL] [Abstract][Full Text] [Related]
3. Regulation of intrinsic polarity establishment by a differentiation-type MAPK pathway in Prabhakar A; Chow J; Siegel AJ; Cullen PJ J Cell Sci; 2020 Apr; 133(7):. PubMed ID: 32079658 [TBL] [Abstract][Full Text] [Related]
4. Modulators of MAPK pathway activity during filamentous growth in Saccharomyces cerevisiae. Pujari AN; Cullen PJ G3 (Bethesda); 2024 Jun; 14(6):. PubMed ID: 38560781 [TBL] [Abstract][Full Text] [Related]
5. Ecological inducers of the yeast filamentous growth pathway reveal environment-dependent roles for pathway components. Vandermeulen MD; Cullen PJ mSphere; 2023 Oct; 8(5):e0028423. PubMed ID: 37732804 [TBL] [Abstract][Full Text] [Related]
6. Turnover and bypass of p21-activated kinase during Cdc42-dependent MAPK signaling in yeast. González B; Mirzaei M; Basu S; Pujari AN; Vandermeulen MD; Prabhakar A; Cullen PJ J Biol Chem; 2023 Nov; 299(11):105297. PubMed ID: 37774975 [TBL] [Abstract][Full Text] [Related]
7. The signaling mucins Msb2 and Hkr1 differentially regulate the filamentation mitogen-activated protein kinase pathway and contribute to a multimodal response. Pitoniak A; Birkaya B; Dionne HM; Vadaie N; Cullen PJ Mol Biol Cell; 2009 Jul; 20(13):3101-14. PubMed ID: 19439450 [TBL] [Abstract][Full Text] [Related]
8. Spatial landmarks regulate a Cdc42-dependent MAPK pathway to control differentiation and the response to positional compromise. Basu S; Vadaie N; Prabhakar A; Li B; Adhikari H; Pitoniak A; Chow J; Chavel CA; Cullen PJ Proc Natl Acad Sci U S A; 2016 Apr; 113(14):E2019-28. PubMed ID: 27001830 [TBL] [Abstract][Full Text] [Related]
9. A Comprehensive Membrane Interactome Mapping of Sho1p Reveals Fps1p as a Novel Key Player in the Regulation of the HOG Pathway in S. cerevisiae. Lam MH; Snider J; Rehal M; Wong V; Aboualizadeh F; Drecun L; Wong O; Jubran B; Li M; Ali M; Jessulat M; Deineko V; Miller R; Lee Me; Park HO; Davidson A; Babu M; Stagljar I J Mol Biol; 2015 Jun; 427(11):2088-103. PubMed ID: 25644660 [TBL] [Abstract][Full Text] [Related]
10. Metabolic respiration induces AMPK- and Ire1p-dependent activation of the p38-Type HOG MAPK pathway. Adhikari H; Cullen PJ PLoS Genet; 2014 Oct; 10(10):e1004734. PubMed ID: 25356552 [TBL] [Abstract][Full Text] [Related]
11. The Hog1 MAPK prevents cross talk between the HOG and pheromone response MAPK pathways in Saccharomyces cerevisiae. O'Rourke SM; Herskowitz I Genes Dev; 1998 Sep; 12(18):2874-86. PubMed ID: 9744864 [TBL] [Abstract][Full Text] [Related]
12. Fus1p interacts with components of the Hog1p mitogen-activated protein kinase and Cdc42p morphogenesis signaling pathways to control cell fusion during yeast mating. Nelson B; Parsons AB; Evangelista M; Schaefer K; Kennedy K; Ritchie S; Petryshen TL; Boone C Genetics; 2004 Jan; 166(1):67-77. PubMed ID: 15020407 [TBL] [Abstract][Full Text] [Related]
13. Regulation of Cdc42 protein turnover modulates the filamentous growth MAPK pathway. González B; Cullen PJ J Cell Biol; 2022 Dec; 221(12):. PubMed ID: 36350310 [TBL] [Abstract][Full Text] [Related]
14. Response to high osmotic conditions and elevated temperature in Saccharomyces cerevisiae is controlled by intracellular glycerol and involves coordinate activity of MAP kinase pathways. Wojda I; Alonso-Monge R; Bebelman JP; Mager WH; Siderius M Microbiology (Reading); 2003 May; 149(Pt 5):1193-1204. PubMed ID: 12724381 [TBL] [Abstract][Full Text] [Related]
15. New Aspects of Invasive Growth Regulation Identified by Functional Profiling of MAPK Pathway Targets in Vandermeulen MD; Cullen PJ Genetics; 2020 Sep; 216(1):95-116. PubMed ID: 32665277 [TBL] [Abstract][Full Text] [Related]
16. Comparative Analysis of Transmembrane Regulators of the Filamentous Growth Mitogen-Activated Protein Kinase Pathway Uncovers Functional and Regulatory Differences. Adhikari H; Caccamise LM; Pande T; Cullen PJ Eukaryot Cell; 2015 Sep; 14(9):868-83. PubMed ID: 26116211 [TBL] [Abstract][Full Text] [Related]
17. Proper protein glycosylation promotes mitogen-activated protein kinase signal fidelity. Lien EC; Nagiec MJ; Dohlman HG Biochemistry; 2013 Jan; 52(1):115-24. PubMed ID: 23210626 [TBL] [Abstract][Full Text] [Related]
18. Single-cell analysis reveals that insulation maintains signaling specificity between two yeast MAPK pathways with common components. Patterson JC; Klimenko ES; Thorner J Sci Signal; 2010 Oct; 3(144):ra75. PubMed ID: 20959523 [TBL] [Abstract][Full Text] [Related]
19. Hog1 mitogen-activated protein kinase (MAPK) interrupts signal transduction between the Kss1 MAPK and the Tec1 transcription factor to maintain pathway specificity. Shock TR; Thompson J; Yates JR; Madhani HD Eukaryot Cell; 2009 Apr; 8(4):606-16. PubMed ID: 19218425 [TBL] [Abstract][Full Text] [Related]
20. Yeast go the whole HOG for the hyperosmotic response. O'Rourke SM; Herskowitz I; O'Shea EK Trends Genet; 2002 Aug; 18(8):405-12. PubMed ID: 12142009 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]