BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 34347343)

  • 21. Deletion of genomic islands in the Pseudomonas putida KT2440 genome can create an optimal chassis for synthetic biology applications.
    Liang P; Zhang Y; Xu B; Zhao Y; Liu X; Gao W; Ma T; Yang C; Wang S; Liu R
    Microb Cell Fact; 2020 Mar; 19(1):70. PubMed ID: 32188438
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Carbaryl as a Carbon and Nitrogen Source: an Inducible Methylamine Metabolic Pathway at the Biochemical and Molecular Levels in
    Kamini ; Sharma R; Punekar NS; Phale PS
    Appl Environ Microbiol; 2018 Dec; 84(24):. PubMed ID: 30315077
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modulation of glucose transport causes preferential utilization of aromatic compounds in Pseudomonas putida CSV86.
    Basu A; Shrivastava R; Basu B; Apte SK; Phale PS
    J Bacteriol; 2007 Nov; 189(21):7556-62. PubMed ID: 17827293
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Vanillin Production in
    García-Hidalgo J; Brink DP; Ravi K; Paul CJ; Lidén G; Gorwa-Grauslund MF
    Appl Environ Microbiol; 2020 Mar; 86(6):. PubMed ID: 31924622
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Repression of the glucose-inducible outer-membrane protein OprB during utilization of aromatic compounds and organic acids in Pseudomonas putida CSV86.
    Shrivastava R; Basu B; Godbole A; Mathew MK; Apte SK; Phale PS
    Microbiology (Reading); 2011 May; 157(Pt 5):1531-1540. PubMed ID: 21330430
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Genetic control of naphthalene biodegradation by a strain of Pseudomonas sp. 8909N].
    Kosheleva IA; Sokolov SL; Balashova NV; Filonov AE; Meleshko EI; Gaiazov RR; Boronin AM
    Genetika; 1997 Jun; 33(6):762-8. PubMed ID: 9289413
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genome Sequence of Naphthalene-Degrading Soil Bacterium Pseudomonas putida CSV86.
    Phale PS; Paliwal V; Raju SC; Modak A; Purohit HJ
    Genome Announc; 2013 Jan; 1(1):. PubMed ID: 23469351
    [No Abstract]   [Full Text] [Related]  

  • 28. Efficiency of naphthalene and salicylate degradation by a recombinant Pseudomonas putida mutant strain defective in glucose metabolism.
    Samanta SK; Bhushan B; Jain RK
    Appl Microbiol Biotechnol; 2001 May; 55(5):627-31. PubMed ID: 11414331
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chemotaxis of Pseudomonas spp. to the polyaromatic hydrocarbon naphthalene.
    Grimm AC; Harwood CS
    Appl Environ Microbiol; 1997 Oct; 63(10):4111-5. PubMed ID: 9327579
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An engineered Pseudomonas putida can simultaneously degrade organophosphates, pyrethroids and carbamates.
    Gong T; Xu X; Dang Y; Kong A; Wu Y; Liang P; Wang S; Yu H; Xu P; Yang C
    Sci Total Environ; 2018 Jul; 628-629():1258-1265. PubMed ID: 30045547
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization and genomic function analysis of phenanthrene-degrading bacterium
    Ji D; Mao Z; He J; Peng S; Wen H
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2020; 55(5):549-562. PubMed ID: 31913782
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evidence for the involvement of multiple pathways in the biodegradation of 1- and 2-methylnaphthalene by Pseudomonas putida CSV86.
    Mahajan MC; Phale PS; Vaidyanathan CS
    Arch Microbiol; 1994; 161(5):425-33. PubMed ID: 8042906
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Horizontal transfer of catabolic plasmids in the process of naphthalene biodegradation in model soil systems].
    Akhmetov LI; Filonov AE; Puntus IF; Kosheleva IA; Nechaeva IA; Yonge DR; Petersen JN; Boronin AM
    Mikrobiologiia; 2008; 77(1):29-39. PubMed ID: 18365719
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparative Genomic Analysis of Antarctic
    Cabrera MÁ; Márquez SL; Pérez-Donoso JM
    Genes (Basel); 2022 Jul; 13(8):. PubMed ID: 36011267
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pseudomonas putida strain PCL1444, selected for efficient root colonization and naphthalene degradation, effectively utilizes root exudate components.
    Kuiper I; Kravchenko LV; Bloemberg GV; Lugtenberg BJ
    Mol Plant Microbe Interact; 2002 Jul; 15(7):734-41. PubMed ID: 12118890
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Performance analysis of Pseudomonas sp. strain SA3 in naphthalene degradation using phytotoxicity and microcosm studies.
    Tirkey SR; Ram S; Mitra M; Mishra S
    Biodegradation; 2022 Apr; 33(2):169-180. PubMed ID: 35103887
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biodegradation of phenanthrene by Pseudomonas sp. strain PP2: novel metabolic pathway, role of biosurfactant and cell surface hydrophobicity in hydrocarbon assimilation.
    Prabhu Y; Phale PS
    Appl Microbiol Biotechnol; 2003 May; 61(4):342-51. PubMed ID: 12743764
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biodegradation of endocrine disruptor Bisphenol A by Pseudomonas putida strain YC-AE1 isolated from polluted soil, Guangdong, China.
    Eltoukhy A; Jia Y; Nahurira R; Abo-Kadoum MA; Khokhar I; Wang J; Yan Y
    BMC Microbiol; 2020 Jan; 20(1):11. PubMed ID: 31931706
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of additional carbon source on naphthalene biodegradation by Pseudomonas putida G7.
    Lee K; Park JW; Ahn IS
    J Hazard Mater; 2003 Dec; 105(1-3):157-67. PubMed ID: 14623425
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparative biochemical and genetic analysis of naphthalene degradation among Pseudomonas stutzeri strains.
    Rosselló-Mora RA; Lalucat J; García-Valdés E
    Appl Environ Microbiol; 1994 Mar; 60(3):966-72. PubMed ID: 8161187
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.