These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 34347419)

  • 1. Antifouling and Mechanical Properties of Photografted Zwitterionic Hydrogel Thin-Film Coatings Depend on the Cross-Link Density.
    Jensen MJ; Peel A; Horne R; Chamberlain J; Xu L; Hansen MR; Guymon CA
    ACS Biomater Sci Eng; 2021 Sep; 7(9):4494-4502. PubMed ID: 34347419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antifouling Photograftable Zwitterionic Coatings on PDMS Substrates.
    Leigh BL; Cheng E; Xu L; Derk A; Hansen MR; Guymon CA
    Langmuir; 2019 Feb; 35(5):1100-1110. PubMed ID: 29983076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photografted Zwitterionic Hydrogel Coating Durability for Reduced Foreign Body Response to Cochlear Implants.
    Peel A; Bennion D; Horne R; Hansen MR; Guymon CA
    ACS Appl Bio Mater; 2024 May; 7(5):3124-3135. PubMed ID: 38584364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reducing the foreign body response on human cochlear implants and their materials in vivo with photografted zwitterionic hydrogel coatings.
    Horne R; Ben-Shlomo N; Jensen M; Ellerman M; Escudero C; Hua R; Bennion D; Guymon CA; Hansen MR
    Acta Biomater; 2023 Aug; 166():212-223. PubMed ID: 37187301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zwitterionic Photografted Coatings of Cochlear Implant Biomaterials Reduce Friction and Insertion Forces.
    Bennion DM; Horne R; Peel A; Reineke P; Henslee A; Kaufmann C; Guymon CA; Hansen MR
    Otol Neurotol; 2021 Dec; 42(10):1476-1483. PubMed ID: 34310554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photograftable Zwitterionic Coatings Prevent
    Shen N; Cheng E; Whitley JW; Horne RR; Leigh B; Xu L; Jones BD; Guymon CA; Hansen MR
    ACS Appl Bio Mater; 2021 Feb; 4(2):1283-1293. PubMed ID: 35014480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simple Thermal Pretreatment Strategy to Tune Mechanical and Antifouling Properties of Zwitterionic Hydrogels.
    He H; Xuan X; Zhang C; Song Y; Chen S; Gong X; Ren B; Zheng J; Wu J
    Langmuir; 2019 Feb; 35(5):1828-1836. PubMed ID: 30032624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformal Hydrogel Coatings on Catheters To Reduce Biofouling.
    Yong Y; Qiao M; Chiu A; Fuchs S; Liu Q; Pardo Y; Worobo R; Liu Z; Ma M
    Langmuir; 2019 Feb; 35(5):1927-1934. PubMed ID: 30441901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular fouling resistance of zwitterionic and amphiphilic initiated chemically vapor-deposited (iCVD) thin films.
    Yang R; Goktekin E; Wang M; Gleason KK
    J Biomater Sci Polym Ed; 2014; 25(14-15):1687-702. PubMed ID: 25188220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anti-biofouling and functionalizable bioinspired chitosan-based hydrogel coating via surface photo-immobilization.
    Xv J; Li H; Zhang W; Lai G; Xue H; Zhao J; Tu M; Zeng R
    J Biomater Sci Polym Ed; 2019 Apr; 30(5):398-414. PubMed ID: 30688155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amino acid-based zwitterionic polymers: antifouling properties and low cytotoxicity.
    Li W; Liu Q; Liu L
    J Biomater Sci Polym Ed; 2014; 25(14-15):1730-42. PubMed ID: 25136859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly antifouling, biocompatible and tough double network hydrogel based on carboxybetaine-type zwitterionic polymer and alginate.
    Zhang J; Chen L; Chen L; Qian S; Mou X; Feng J
    Carbohydr Polym; 2021 Apr; 257():117627. PubMed ID: 33541653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surfaces with antifouling-antimicrobial dual function
    Khlyustova A; Kirsch M; Ma X; Cheng Y; Yang R
    J Mater Chem B; 2022 Apr; 10(14):2728-2739. PubMed ID: 35156115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of crosslink density in zwitterionic hydrogel coatings on their antifouling performance and susceptibility to silt uptake.
    Koc J; Schönemann E; Wanka R; Aldred N; Clare AS; Gardner H; Swain GW; Hunsucker K; Laschewsky A; Rosenhahn A
    Biofouling; 2020 Jul; 36(6):646-659. PubMed ID: 32718200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular simulations and understanding of antifouling zwitterionic polymer brushes.
    Liu Y; Zhang D; Ren B; Gong X; Xu L; Feng ZQ; Chang Y; He Y; Zheng J
    J Mater Chem B; 2020 May; 8(17):3814-3828. PubMed ID: 32227061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of Novel Sulfobetaine Polymers with Differing Dipole Orientations in Their Side Chains, and Their Effects on the Antifouling Properties.
    Schönemann E; Koc J; Aldred N; Clare AS; Laschewsky A; Rosenhahn A; Wischerhoff E
    Macromol Rapid Commun; 2020 Jan; 41(1):e1900447. PubMed ID: 31747088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Grafting Robust Thick Zwitterionic Polymer Brushes via Subsurface-Initiated Ring-Opening Metathesis Polymerization for Antimicrobial and Anti-Biofouling.
    Ye Q; He B; Zhang Y; Zhang J; Liu S; Zhou F
    ACS Appl Mater Interfaces; 2019 Oct; 11(42):39171-39178. PubMed ID: 31559815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and characterization of a zwitterionic hydrogel blend with low coefficient of friction.
    Osaheni AO; Finkelstein EB; Mather PT; Blum MM
    Acta Biomater; 2016 Dec; 46():245-255. PubMed ID: 27650587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-Fouling Characteristics of Ultrathin Zwitterionic Cysteine SAMs.
    Lin P; Chuang TL; Chen PZ; Lin CW; Gu FX
    Langmuir; 2019 Feb; 35(5):1756-1767. PubMed ID: 30056710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanostructured antifouling poly(ethylene glycol) films for silicon-based microsystems.
    Sharma S; Desai TA
    J Nanosci Nanotechnol; 2005 Feb; 5(2):235-43. PubMed ID: 15853141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.