These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 34347448)

  • 1. Enhanced Charge Transport in Two-Dimensional Materials through Light-Matter Strong Coupling.
    Bhatt P; Kaur K; George J
    ACS Nano; 2021 Aug; 15(8):13616-13622. PubMed ID: 34347448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Observation and Active Control of a Collective Polariton Mode and Polaritonic Band Gap in Few-Layer WS
    Liu W; Wang Y; Zheng B; Hwang M; Ji Z; Liu G; Li Z; Sorger VJ; Pan A; Agarwal R
    Nano Lett; 2020 Jan; 20(1):790-798. PubMed ID: 31846342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cavity-Free Ultrastrong Light-Matter Coupling.
    Thomas PA; Menghrajani KS; Barnes WL
    J Phys Chem Lett; 2021 Jul; 12(29):6914-6918. PubMed ID: 34280306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Collective Strong Light-Matter Coupling in Hierarchical Microcavity-Plasmon-Exciton Systems.
    Bisht A; Cuadra J; Wersäll M; Canales A; Antosiewicz TJ; Shegai T
    Nano Lett; 2019 Jan; 19(1):189-196. PubMed ID: 30500202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coherent Coupling of WS2 Monolayers with Metallic Photonic Nanostructures at Room Temperature.
    Wang S; Li S; Chervy T; Shalabney A; Azzini S; Orgiu E; Hutchison JA; Genet C; Samorì P; Ebbesen TW
    Nano Lett; 2016 Jul; 16(7):4368-74. PubMed ID: 27266674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inherent Promotion of Ionic Conductivity via Collective Vibrational Strong Coupling of Water with the Vacuum Electromagnetic Field.
    Fukushima T; Yoshimitsu S; Murakoshi K
    J Am Chem Soc; 2022 Jul; 144(27):12177-12183. PubMed ID: 35737737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Abundance of cavity-free polaritonic states in resonant materials and nanostructures.
    Canales A; Baranov DG; Antosiewicz TJ; Shegai T
    J Chem Phys; 2021 Jan; 154(2):024701. PubMed ID: 33445887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Realization of strong coupling between 2D excitons and cavity photons at room temperature.
    Zhao X; Yan Y; Cui Z; Liu F; Wang S; Sun L; Chen Y; Lu W
    Opt Lett; 2020 Dec; 45(24):6571-6574. PubMed ID: 33325842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cavity-Enhanced Transport of Charge.
    Hagenmüller D; Schachenmayer J; Schütz S; Genes C; Pupillo G
    Phys Rev Lett; 2017 Dec; 119(22):223601. PubMed ID: 29286774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brightening of a dark monolayer semiconductor via strong light-matter coupling in a cavity.
    Shan H; Iorsh I; Han B; Rupprecht C; Knopf H; Eilenberger F; Esmann M; Yumigeta K; Watanabe K; Taniguchi T; Klembt S; Höfling S; Tongay S; Antón-Solanas C; Shelykh IA; Schneider C
    Nat Commun; 2022 May; 13(1):3001. PubMed ID: 35637218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of Strong Light-Matter Interaction in Monolayer WS
    Chakraborty B; Gu J; Sun Z; Khatoniar M; Bushati R; Boehmke AL; Koots R; Menon VM
    Nano Lett; 2018 Oct; 18(10):6455-6460. PubMed ID: 30160968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A versatile tunable microcavity for investigation of light-matter interaction.
    Mochalov KE; Vaskan IS; Dovzhenko DS; Rakovich YP; Nabiev I
    Rev Sci Instrum; 2018 May; 89(5):053105. PubMed ID: 29864833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ab initio polaritonic potential-energy surfaces for excited-state nanophotonics and polaritonic chemistry.
    Flick J; Narang P
    J Chem Phys; 2020 Sep; 153(9):094116. PubMed ID: 32891103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conductivity and Photoconductivity of a p-Type Organic Semiconductor under Ultrastrong Coupling.
    Nagarajan K; George J; Thomas A; Devaux E; Chervy T; Azzini S; Joseph K; Jouaiti A; Hosseini MW; Kumar A; Genet C; Bartolo N; Ciuti C; Ebbesen TW
    ACS Nano; 2020 Aug; 14(8):10219-10225. PubMed ID: 32806034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum Yield of Polariton Emission from Hybrid Light-Matter States.
    Wang S; Chervy T; George J; Hutchison JA; Genet C; Ebbesen TW
    J Phys Chem Lett; 2014 Apr; 5(8):1433-9. PubMed ID: 26269990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polariton Transitions in Femtosecond Transient Absorption Studies of Ultrastrong Light-Molecule Coupling.
    DelPo CA; Kudisch B; Park KH; Khan SU; Fassioli F; Fausti D; Rand BP; Scholes GD
    J Phys Chem Lett; 2020 Apr; 11(7):2667-2674. PubMed ID: 32186878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light-matter interaction in the strong coupling regime: configurations, conditions, and applications.
    Dovzhenko DS; Ryabchuk SV; Rakovich YP; Nabiev IR
    Nanoscale; 2018 Feb; 10(8):3589-3605. PubMed ID: 29419830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control and Enhancement of Single-Molecule Electroluminescence through Strong Light-Matter Coupling.
    Miwa K; Sakamoto S; Ishizaki A
    Nano Lett; 2023 Apr; 23(8):3231-3238. PubMed ID: 37039831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solvent Dependence on Cooperative Vibrational Strong Coupling and Cavity Catalysis.
    Singh J; Lather J; George J
    Chemphyschem; 2023 Jun; 24(11):e202300016. PubMed ID: 36745043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuously-tunable light-matter coupling in optical microcavities with 2D semiconductors.
    Wall F; Mey O; Schneider LM; Rahimi-Iman A
    Sci Rep; 2020 May; 10(1):8303. PubMed ID: 32427933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.