BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 34347483)

  • 1. Biopatterning: The Art of Patterning Biomolecules on Surfaces.
    Delamarche E; Pereiro I; Kashyap A; Kaigala GV
    Langmuir; 2021 Aug; 37(32):9637-9651. PubMed ID: 34347483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Underpinning transport phenomena for the patterning of biomolecules.
    Pereiro I; Cors JF; Pané S; Nelson BJ; Kaigala GV
    Chem Soc Rev; 2019 Mar; 48(5):1236-1254. PubMed ID: 30671579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Patterning multiplex protein microarrays in a single microfluidic channel.
    Didar TF; Foudeh AM; Tabrizian M
    Anal Chem; 2012 Jan; 84(2):1012-8. PubMed ID: 22124457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microcontact printing with aminosilanes: creating biomolecule micro- and nanoarrays for multiplexed microfluidic bioassays.
    Sathish S; Ricoult SG; Toda-Peters K; Shen AQ
    Analyst; 2017 May; 142(10):1772-1781. PubMed ID: 28430279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface patterning techniques for proteins on nano- and micro-systems: a modulated aspect in hierarchical structures.
    Bhatt M; Shende P
    J Mater Chem B; 2022 Feb; 10(8):1176-1195. PubMed ID: 35119060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Micro- and nanodevices integrated with biomolecular probes.
    Alapan Y; Icoz K; Gurkan UA
    Biotechnol Adv; 2015 Dec; 33(8):1727-43. PubMed ID: 26363089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Capillary-Driven Microfluidic Chips for Miniaturized Immunoassays: Patterning Capture Antibodies Using Microcontact Printing and Dry-Film Resists.
    Temiz Y; Lovchik RD; Delamarche E
    Methods Mol Biol; 2017; 1547():37-47. PubMed ID: 28044285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic
    Nie Y; Jin C; Zhang JXJ
    ACS Sens; 2021 Jul; 6(7):2584-2592. PubMed ID: 34148342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface patterning by microcontact chemistry.
    Wendeln C; Ravoo BJ
    Langmuir; 2012 Apr; 28(13):5527-38. PubMed ID: 22263907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic inking of large-scale stamps for multiplexed microcontact printing and fabrication of cell microarrays.
    Foncy J; Estève A; Degache A; Colin C; Dollat X; Cau JC; Vieu C; Trévisiol E; Malaquin L
    PLoS One; 2018; 13(8):e0202531. PubMed ID: 30138342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasma-induced covalent immobilization and patterning of bioactive species in microfluidic devices.
    Shakeri A; Imani SM; Chen E; Yousefi H; Shabbir R; Didar TF
    Lab Chip; 2019 Sep; 19(18):3104-3115. PubMed ID: 31429455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfabrication and microfluidics for tissue engineering: state of the art and future opportunities.
    Andersson H; van den Berg A
    Lab Chip; 2004 Apr; 4(2):98-103. PubMed ID: 15052347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Precise manipulation of cell behaviors on surfaces for construction of tissue/organs.
    Zheng W; Jiang X
    Colloids Surf B Biointerfaces; 2014 Dec; 124():97-110. PubMed ID: 25280606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic Technology for Nucleic Acid Aptamer Evolution and Application.
    Fraser LA; Cheung YW; Kinghorn AB; Guo W; Shiu SC; Jinata C; Liu M; Bhuyan S; Nan L; Shum HC; Tanner JA
    Adv Biosyst; 2019 May; 3(5):e1900012. PubMed ID: 32627415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Micropatterned biofunctional lubricant-infused surfaces promote selective localized cell adhesion and patterning.
    Imani SM; Badv M; Shakeri A; Yousefi H; Yip D; Fine C; Didar TF
    Lab Chip; 2019 Oct; 19(19):3228-3237. PubMed ID: 31468050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biopatterning of antibodies on poly(pyrrole)-nanowires using nanocontact printing: Surface characterization.
    Garcia-Cruz A; Lee M; Zine N; Sigaud M; Marote P; Lopez M; Bausells J; Jaffrezic-Renault N; Errachid A
    Mater Sci Eng C Mater Biol Appl; 2018 Oct; 91():466-474. PubMed ID: 30033278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acoustic micromachining of three-dimensional surfaces for biological applications.
    Entcheva E; Bien H
    Lab Chip; 2005 Feb; 5(2):179-83. PubMed ID: 15672132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integration of cell culture and microfabrication technology.
    Park TH; Shuler ML
    Biotechnol Prog; 2003; 19(2):243-53. PubMed ID: 12675556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stratified polymer brushes from microcontact printing of polydopamine initiator on polymer brush surfaces.
    Wei Q; Yu B; Wang X; Zhou F
    Macromol Rapid Commun; 2014 Jun; 35(11):1046-54. PubMed ID: 24648357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidics in the "open space" for performing localized chemistry on biological interfaces.
    Kaigala GV; Lovchik RD; Delamarche E
    Angew Chem Int Ed Engl; 2012 Nov; 51(45):11224-40. PubMed ID: 23111955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.