These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 34347511)

  • 1. Periphytic Microbial Response to Environmental Phosphate (P) Bioavailability and Its Relevance to P Management in Paddy Fields.
    Zhang J; Su J; Ma C; Hu X; Teng HH
    Appl Environ Microbiol; 2021 Sep; 87(20):e0120121. PubMed ID: 34347511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Periphyton has the potential to increase phosphorus use efficiency in paddy fields.
    Li JY; Deng KY; Cai SJ; Lu HL; Xu RK
    Sci Total Environ; 2020 Jun; 720():137711. PubMed ID: 32325605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Paddy periphyton reduced cadmium accumulation in rice (Oryza sativa) by removing and immobilizing cadmium from the water-soil interface.
    Lu H; Dong Y; Feng Y; Bai Y; Tang X; Li Y; Yang L; Liu J
    Environ Pollut; 2020 Jun; 261():114103. PubMed ID: 32066051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Periphyton: an important regulator in optimizing soil phosphorus bioavailability in paddy fields.
    Wu Y; Liu J; Lu H; Wu C; Kerr P
    Environ Sci Pollut Res Int; 2016 Nov; 23(21):21377-21384. PubMed ID: 27502563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Periphytic biofilm: A buffer for phosphorus precipitation and release between sediments and water.
    Lu H; Wan J; Li J; Shao H; Wu Y
    Chemosphere; 2016 Feb; 144():2058-64. PubMed ID: 26583287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyanobacteria as regulators of methylmercury production in periphyton.
    Lázaro WL; Díez S; Bravo AG; da Silva CJ; Ignácio ÁRA; Guimaraes JRD
    Sci Total Environ; 2019 Jun; 668():723-729. PubMed ID: 30861408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Periphytic biofilms: A promising nutrient utilization regulator in wetlands.
    Wu Y; Liu J; Rene ER
    Bioresour Technol; 2018 Jan; 248(Pt B):44-48. PubMed ID: 28756125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of the interaction between phosphate and arsenate on periphyton's growth and its nutrient uptake capacity.
    Rodriguez Castro MC; Urrea G; Guasch H
    Sci Total Environ; 2015 Jan; 503-504():122-32. PubMed ID: 25005240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selenium oxyanion bioconcentration in natural freshwater periphyton.
    Markwart B; Liber K; Xie Y; Raes K; Hecker M; Janz D; Doig LE
    Ecotoxicol Environ Saf; 2019 Sep; 180():693-704. PubMed ID: 31146156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Periphytic biofilms function as a double-edged sword influencing nitrogen cycling in paddy fields.
    Sun P; Chen Y; Liu J; Xu Y; Zhou L; Wu Y
    Environ Microbiol; 2022 Dec; 24(12):6279-6289. PubMed ID: 36335557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accumulated temperature dictates the regional structural variation of prokaryotic periphyton at soil-water interface in paddy fields.
    Sun P; Fan K; Jiang Y; Chu H; Chen Y; Wu Y
    Water Res; 2024 Nov; 265():122259. PubMed ID: 39154398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions between periphytic biofilms and dissolved organic matter at soil-water interface and the consequent effects on soil phosphorus fraction changes.
    Liu J; Lu H; Wu L; Kerr PG; Wu Y
    Sci Total Environ; 2021 Dec; 801():149708. PubMed ID: 34438149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Periphytic biofilms accumulate manganese, intercepting its emigration from paddy soil.
    Sun P; Gao M; Sun R; Wu Y; Dolfing J
    J Hazard Mater; 2021 Jun; 411():125172. PubMed ID: 33858112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of titanium dioxide nanoparticles on algal and bacterial communities in periphytic biofilms.
    Hou J; Li T; Miao L; You G; Xu Y; Liu S
    Environ Pollut; 2019 Aug; 251():407-414. PubMed ID: 31103000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of periphyton on seed germination and seedling growth of rice (Oryza sativa) in paddy area.
    Lu H; Liu J; Kerr PG; Shao H; Wu Y
    Sci Total Environ; 2017 Feb; 578():74-80. PubMed ID: 27503628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Indole-3-acetic acid improves periphyton's resistance to ultraviolet-B: From physiological-biochemical properties and bacteria community to livestock-polluted water purification.
    Shi T; Lure M; Zhang R; Liu Z; Hu Q; Liu J; Yang S; Jing L
    Environ Res; 2024 Apr; 246():118029. PubMed ID: 38160980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions between dicyandiamide and periphytic biofilms in paddy soils and subsequent effects on nitrogen cycling.
    Zhao Y; Liu H; Wang R; Wu C
    Sci Total Environ; 2020 May; 718():137417. PubMed ID: 32105918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Seasonal changes in peryphytic microbial metabolism determining mercury methylation in a tropical wetland.
    Lázaro WL; Díez S; da Silva CJ; Ignácio ÁRA; Guimarães JRD
    Sci Total Environ; 2018 Jun; 627():1345-1352. PubMed ID: 30857098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sources and bioavailability of phosphorus fractions in freshwaters: a British perspective.
    Reynolds CS; Davies PS
    Biol Rev Camb Philos Soc; 2001 Feb; 76(1):27-64. PubMed ID: 11325053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-contamination of Cu and Cd in paddy fields: Using periphyton to entrap heavy metals.
    Yang J; Tang C; Wang F; Wu Y
    J Hazard Mater; 2016 Mar; 304():150-8. PubMed ID: 26551219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.