These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 34347784)

  • 1. Deep geometric representations for modeling effects of mutations on protein-protein binding affinity.
    Liu X; Luo Y; Li P; Song S; Peng J
    PLoS Comput Biol; 2021 Aug; 17(8):e1009284. PubMed ID: 34347784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DDAffinity: predicting the changes in binding affinity of multiple point mutations using protein 3D structure.
    Yu G; Zhao Q; Bi X; Wang J
    Bioinformatics; 2024 Jun; 40(Supplement_1):i418-i427. PubMed ID: 38940145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DGCddG: Deep Graph Convolution for Predicting Protein-Protein Binding Affinity Changes Upon Mutations.
    Jiang Y; Quan L; Li K; Li Y; Zhou Y; Wu T; Lyu Q
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(3):2089-2100. PubMed ID: 37018301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PANDA: Predicting the change in proteins binding affinity upon mutations by finding a signal in primary structures.
    Abbasi WA; Abbas SA; Andleeb S
    J Bioinform Comput Biol; 2021 Aug; 19(4):2150015. PubMed ID: 34126874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutation effect estimation on protein-protein interactions using deep contextualized representation learning.
    Zhou G; Chen M; Ju CJT; Wang Z; Jiang JY; Wang W
    NAR Genom Bioinform; 2020 Jun; 2(2):lqaa015. PubMed ID: 32166223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MpbPPI: a multi-task pre-training-based equivariant approach for the prediction of the effect of amino acid mutations on protein-protein interactions.
    Yue Y; Li S; Wang L; Liu H; Tong HHY; He S
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37651610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. iSEE: Interface structure, evolution, and energy-based machine learning predictor of binding affinity changes upon mutations.
    Geng C; Vangone A; Folkers GE; Xue LC; Bonvin AMJJ
    Proteins; 2019 Feb; 87(2):110-119. PubMed ID: 30417935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface-based multimodal protein-ligand binding affinity prediction.
    Xu S; Shen L; Zhang M; Jiang C; Zhang X; Xu Y; Liu J; Liu X
    Bioinformatics; 2024 Jul; 40(7):. PubMed ID: 38905501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. StackCPA: A stacking model for compound-protein binding affinity prediction based on pocket multi-scale features.
    Lei C; Lu Z; Wang M; Li M
    Comput Biol Med; 2023 Sep; 164():107131. PubMed ID: 37494820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DeepDTAF: a deep learning method to predict protein-ligand binding affinity.
    Wang K; Zhou R; Li Y; Li M
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33834190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SAAFEC-SEQ: A Sequence-Based Method for Predicting the Effect of Single Point Mutations on Protein Thermodynamic Stability.
    Li G; Panday SK; Alexov E
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33435356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MDeePred: novel multi-channel protein featurization for deep learning-based binding affinity prediction in drug discovery.
    Rifaioglu AS; Cetin Atalay R; Cansen Kahraman D; Doğan T; Martin M; Atalay V
    Bioinformatics; 2021 May; 37(5):693-704. PubMed ID: 33067636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DeepCPI: A Deep Learning-based Framework for Large-scale in silico Drug Screening.
    Wan F; Zhu Y; Hu H; Dai A; Cai X; Chen L; Gong H; Xia T; Yang D; Wang MW; Zeng J
    Genomics Proteomics Bioinformatics; 2019 Oct; 17(5):478-495. PubMed ID: 32035227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting Affinity Through Homology (PATH): Interpretable Binding Affinity Prediction with Persistent Homology.
    Long Y; Donald BR
    bioRxiv; 2023 Nov; ():. PubMed ID: 38014181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting protein-peptide binding residues via interpretable deep learning.
    Wang R; Jin J; Zou Q; Nakai K; Wei L
    Bioinformatics; 2022 Jun; 38(13):3351-3360. PubMed ID: 35604077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DeepPPAPredMut: deep ensemble method for predicting the binding affinity change in protein-protein complexes upon mutation.
    Nikam R; Jemimah S; Gromiha MM
    Bioinformatics; 2024 May; 40(5):. PubMed ID: 38718170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein-protein interactions: scoring schemes and binding affinity.
    Gromiha MM; Yugandhar K; Jemimah S
    Curr Opin Struct Biol; 2017 Jun; 44():31-38. PubMed ID: 27866112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A topology-based network tree for the prediction of protein-protein binding affinity changes following mutation.
    Wang M; Cang Z; Wei GW
    Nat Mach Intell; 2020; 2(2):116-123. PubMed ID: 34170981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ScanNet: an interpretable geometric deep learning model for structure-based protein binding site prediction.
    Tubiana J; Schneidman-Duhovny D; Wolfson HJ
    Nat Methods; 2022 Jun; 19(6):730-739. PubMed ID: 35637310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multimodal pretraining for unsupervised protein representation learning.
    Nguyen VTD; Hy TS
    Biol Methods Protoc; 2024; 9(1):bpae043. PubMed ID: 38983679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.