These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 34348245)

  • 1. Torsional strain engineering of transition metal dichalcogenide nanotubes: an
    Bhardwaj A; Sharma A; Suryanarayana P
    Nanotechnology; 2021 Sep; 32(47):. PubMed ID: 34348245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strain engineering of Zeeman and Rashba effects in transition metal dichalcogenide nanotubes and their Janus variants: an
    Bhardwaj A; Suryanarayana P
    Nanotechnology; 2024 Feb; 35(18):. PubMed ID: 38271729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Torsional moduli of transition metal dichalcogenide nanotubes from first principles.
    Bhardwaj A; Sharma A; Suryanarayana P
    Nanotechnology; 2021 Apr; 32(28):. PubMed ID: 33827066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MoS2/MX2 heterobilayers: bandgap engineering via tensile strain or external electrical field.
    Lu N; Guo H; Li L; Dai J; Wang L; Mei WN; Wu X; Zeng XC
    Nanoscale; 2014 Mar; 6(5):2879-86. PubMed ID: 24473269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of the electronic structure of single-walled black phosphorus nanotubes.
    Guan L; Chen G; Tao J
    Phys Chem Chem Phys; 2016 Jun; 18(22):15177-81. PubMed ID: 27198550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electronic structure properties of transition metal dichalcogenide nanotubes: a DFT benchmark.
    de Alencar Rocha R; da Cunha WF; Ribeiro LA
    J Mol Model; 2019 Aug; 25(9):290. PubMed ID: 31473823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The dimensional and hydrogenating effect on the electronic properties of ZnSe nanomaterials: a computational investigation.
    Lv X; Li F; Gong J; Chen Z
    Phys Chem Chem Phys; 2018 Oct; 20(37):24453-24464. PubMed ID: 30221293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous flexoelectricity and band engineering in MS
    Dong J; Hu H; Li H; Ouyang G
    Phys Chem Chem Phys; 2021 Sep; 23(36):20574-20582. PubMed ID: 34505592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. When double-wall carbon nanotubes can become metallic or semiconducting.
    Moradian R; Azadi S; Refii-Tabar H
    J Phys Condens Matter; 2007 Apr; 19(17):176209. PubMed ID: 21690955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strain engineering of electronic properties and anomalous valley hall conductivity of transition metal dichalcogenide nanoribbons.
    Shayeganfar F
    Sci Rep; 2022 Jul; 12(1):11285. PubMed ID: 35788139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybridization induced metallic and magnetic edge states in noble transition-metal-dichalcogenides of PtX
    Liu S; Liu Z
    Phys Chem Chem Phys; 2018 Aug; 20(33):21441-21446. PubMed ID: 30087962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dimensional changes as a function of charge injection in single-walled carbon nanotubes.
    Sun G; Kürti J; Kertesz M; Baughman RH
    J Am Chem Soc; 2002 Dec; 124(50):15076-80. PubMed ID: 12475352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronic structure and optical signatures of semiconducting transition metal dichalcogenide nanosheets.
    Zhao W; Ribeiro RM; Eda G
    Acc Chem Res; 2015 Jan; 48(1):91-9. PubMed ID: 25515381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chiral γ-graphyne nanotubes with almost equivalent bandgaps.
    Wu S; Yuan Y; Cho D; Lee JY; Kang B
    J Chem Phys; 2019 Feb; 150(5):054706. PubMed ID: 30736670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electronic structures of in-plane two-dimensional transition-metal dichalcogenide heterostructures.
    Wei W; Dai Y; Sun Q; Yin N; Han S; Huang B; Jacob T
    Phys Chem Chem Phys; 2015 Nov; 17(43):29380-6. PubMed ID: 26473697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning the electronic and magnetic properties of MoS
    Yang Y; Liu Y; Man B; Zhao M; Li W
    RSC Adv; 2019 May; 9(30):17203-17210. PubMed ID: 35519879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electromechanics in MoS₂ and WS₂: nanotubes vs. monolayers.
    Ghorbani-Asl M; Zibouche N; Wahiduzzaman M; Oliveira AF; Kuc A; Heine T
    Sci Rep; 2013 Oct; 3():2961. PubMed ID: 24129919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A theoretical study on the electronic, structural and optical properties of armchair, zigzag and chiral silicon-germanium nanotubes.
    Herrera-Carbajal A; Rodríguez-Lugo V; Hernández-Ávila J; Sánchez-Castillo A
    Phys Chem Chem Phys; 2021 Jun; 23(23):13075-13086. PubMed ID: 34042934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.
    Barone V; Hod O; Peralta JE; Scuseria GE
    Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of interwall interaction on the electronic structure of double-walled carbon nanotubes.
    Soto M; Boyer TA; Biradar S; Ge L; Vajtai R; Elías-Zúñiga A; Ajayan PM; Barrera EV
    Nanotechnology; 2015 Apr; 26(16):165201. PubMed ID: 25816374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.