These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 34348250)

  • 1. Properties of the Pt(111)/electrolyte electrochemical interface studied with a hybrid DFT-solvation approach.
    Tesch R; Kowalski PM; Eikerling MH
    J Phys Condens Matter; 2021 Aug; 33(44):. PubMed ID: 34348250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interface Properties of the Partially Oxidized Pt(111) Surface Using Hybrid DFT-Solvation Models.
    Fernandez-Alvarez VM; Eikerling MH
    ACS Appl Mater Interfaces; 2019 Nov; 11(46):43774-43780. PubMed ID: 31650835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Combined Reaction Path Search and Hybrid Solvation Method for the Systematic Exploration of Elementary Reactions at the Solid-Liquid Interface.
    Hasegawa T; Hagiwara S; Otani M; Maeda S
    J Phys Chem Lett; 2023 Oct; 14(39):8796-8804. PubMed ID: 37747821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solvation Free Energies and Adsorption Energies at the Metal/Water Interface from Hybrid Quantum-Mechanical/Molecular Mechanics Simulations.
    Clabaut P; Schweitzer B; Götz AW; Michel C; Steinmann SN
    J Chem Theory Comput; 2020 Oct; 16(10):6539-6549. PubMed ID: 32931268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemistry from first-principles in the grand canonical ensemble.
    Bhandari A; Peng C; Dziedzic J; Anton L; Owen JR; Kramer D; Skylaris CK
    J Chem Phys; 2021 Jul; 155(2):024114. PubMed ID: 34266248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Density functional theory study of the electrochemical interface between a Pt electrode and an aqueous electrolyte using an implicit solvent method.
    Sakong S; Naderian M; Mathew K; Hennig RG; Groß A
    J Chem Phys; 2015 Jun; 142(23):234107. PubMed ID: 26093550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-consistent modeling of electrochemical strain microscopy of solid electrolytes.
    Tselev A; Morozovska AN; Udod A; Eliseev EA; Kalinin SV
    Nanotechnology; 2014 Nov; 25(44):445701. PubMed ID: 25302673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D-RISM-MP2 Approach to Hydration Structure of Pt(II) and Pd(II) Complexes: Unusual H-Ahead Mode vs Usual O-Ahead One.
    Aono S; Mori T; Sakaki S
    J Chem Theory Comput; 2016 Mar; 12(3):1189-206. PubMed ID: 26863511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implicit Solvation Methods for Catalysis at Electrified Interfaces.
    Ringe S; Hörmann NG; Oberhofer H; Reuter K
    Chem Rev; 2022 Jun; 122(12):10777-10820. PubMed ID: 34928131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The electrochemical interface in first-principles calculations.
    Schwarz K; Sundararaman R
    Surf Sci Rep; 2020 May; 75(2):. PubMed ID: 34194128
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Hagopian A; Falcone A; Ben Yahia M; Filhol JS
    J Phys Condens Matter; 2021 Jun; 33(30):. PubMed ID: 34108293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uranyl Solvation by a Three-Dimensional Reference Interaction Site Model.
    Matveev A; Li B; Rösch N
    J Phys Chem A; 2015 Aug; 119(32):8702-13. PubMed ID: 26167741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Grand canonical simulations of electrochemical interfaces in implicit solvation models.
    Hörmann NG; Andreussi O; Marzari N
    J Chem Phys; 2019 Jan; 150(4):041730. PubMed ID: 30709280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advancement of the Homogeneous Background Method for the Computational Simulation of Electrochemical Interfaces.
    Hagopian A; Doublet ML; Filhol JS; Binninger T
    J Chem Theory Comput; 2022 Mar; 18(3):1883-1893. PubMed ID: 35170945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implicit self-consistent electrolyte model in plane-wave density-functional theory.
    Mathew K; Kolluru VSC; Mula S; Steinmann SN; Hennig RG
    J Chem Phys; 2019 Dec; 151(23):234101. PubMed ID: 31864239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theory of electrostatic phenomena in water-filled Pt nanopores.
    Huang J; Zhang J; Eikerling M
    Faraday Discuss; 2016 Dec; 193():427-446. PubMed ID: 27711814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical method for quantifying the potential of zero charge at the platinum-water electrochemical interface.
    Xu P; von Rueden AD; Schimmenti R; Mavrikakis M; Suntivich J
    Nat Mater; 2023 Apr; 22(4):503-510. PubMed ID: 36781952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluating continuum solvation models for the electrode-electrolyte interface: Challenges and strategies for improvement.
    Sundararaman R; Schwarz K
    J Chem Phys; 2017 Feb; 146(8):084111. PubMed ID: 28249432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simple electrochemical method for deposition and voltammetric inspection of silver particles at the liquid-liquid interface of a thin-film electrode.
    Mirceski V; Gulaboski R
    J Phys Chem B; 2006 Feb; 110(6):2812-20. PubMed ID: 16471890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.