These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 34348582)

  • 1. The role of death anxiety on marksmanship performance: a virtual reality simulator study.
    Ku X; Hyun S; Lee B
    Ergonomics; 2022 Feb; 65(2):219-232. PubMed ID: 34348582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acute effects of caffeine supplementation on cortical arousal, anxiety, physiological response and marksmanship in close quarter combat.
    Clemente-Suarez VJ; Robles-Pérez JJ
    Ergonomics; 2015; 58(11):1842-50. PubMed ID: 25848703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of Fire Arms Training in a Virtual Reality Environment on Occupational Performance (Marksmanship) in a Polytrauma Population.
    Oliver RA; Cancio JM; Rábago CA; Yancosek KE
    Mil Med; 2019 Dec; 184(11-12):832-838. PubMed ID: 30793181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relation of rifle stock length and weight to military rifle marksmanship performance by men and women.
    Kemnitz CP; Johnson RF; Merullo DJ; Rice VJ
    Percept Mot Skills; 2001 Oct; 93(2):479-85. PubMed ID: 11769906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of a purported nootropic supplementation on measures of mood, stress, and marksmanship performance in U.S. active duty soldiers.
    Barringer N; Crombie A; Kotwal R
    J Int Soc Sports Nutr; 2018 May; 15(1):26. PubMed ID: 29855372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measuring Lethal Force Performance in the Lab: The Effects of Simulator Realism and Participant Experience.
    Blacker KJ; Pettijohn KA; Roush G; Biggs AT
    Hum Factors; 2021 Nov; 63(7):1141-1155. PubMed ID: 32297813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of Expert and Novice marksmanship performance and postural mechanics using inertial measurement units (IMUs) during dynamic live-fire shooting.
    O'Donovan MP; Hancock CL; Bode VG; Hasselquist L
    Appl Ergon; 2024 Jan; 114():104131. PubMed ID: 37783048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of carrying different military equipment during a fatigue test on shooting performance.
    Gil-Cosano JJ; Orantes-Gonzalez E; Heredia-Jimenez J
    Eur J Sport Sci; 2019 Mar; 19(2):186-191. PubMed ID: 30043678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Military readiness: an exploration of the relationship between marksmanship and visual acuity.
    Wells KH; Wagner H; Reich LN; Hardigan PC
    Mil Med; 2009 Apr; 174(4):398-402. PubMed ID: 19485110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Neurocognitive Temporal Training on Weapon Firing Performance.
    Enders LR; Boykin GL; Rice VJ
    Percept Mot Skills; 2020 Oct; 127(5):939-959. PubMed ID: 32484068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Association between circulating inflammatory markers and marksmanship following intense military training.
    Gepner Y; Hoffman JR; Hoffman MW; Zelicha H; Cohen H; Ostfeld I
    J R Army Med Corps; 2019 Dec; 165(6):391-394. PubMed ID: 30530789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of rifle marksmanship on simulated targets during thermal discomfort.
    Tikuisis P; Keefe AA; Keillor J; Grant S; Johnson RF
    Aviat Space Environ Med; 2002 Dec; 73(12):1176-83. PubMed ID: 12498545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Does Virtual Reality Increase Simulator Sickness During Exposure Therapy for Post-Traumatic Stress Disorder?
    Reger GM; Smolenski D; Edwards-Stewart A; Skopp NA; Rizzo AS; Norr A
    Telemed J E Health; 2019 Sep; 25(9):859-861. PubMed ID: 30379634
    [No Abstract]   [Full Text] [Related]  

  • 14. A Virtual Reality Soldier Simulator with Body Area Networks for Team Training.
    Fan YC; Wen CY
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30678276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sleep restriction and cognitive load affect performance on a simulated marksmanship task.
    Smith CD; Cooper AD; Merullo DJ; Cohen BS; Heaton KJ; Claro PJ; Smith T
    J Sleep Res; 2019 Jun; 28(3):e12637. PubMed ID: 29171171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intraocular pressure responses to a virtual reality shooting simulation in active-duty members of the Spanish Army: The influence of task complexity.
    Vera J; Janicijevic D; Miras-Moreno S; Pérez-Castilla A; Jiménez R; Redondo B; García-Ramos A
    Physiol Behav; 2022 Nov; 256():113957. PubMed ID: 36070832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correcting intermittent central suppression improves binocular marksmanship.
    Hussey ES
    Mil Med; 2007 Apr; 172(4):414-7. PubMed ID: 17484315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Factors Influencing Marksmanship in Police Officers: A Narrative Review.
    Simas V; Schram B; Canetti EFD; Maupin D; Orr R
    Int J Environ Res Public Health; 2022 Oct; 19(21):. PubMed ID: 36361117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acute caffeine intake before and after fatiguing exercise improves target shooting engagement time.
    Gillingham RL; Keefe AA; Tikuisis P
    Aviat Space Environ Med; 2004 Oct; 75(10):865-71. PubMed ID: 15497366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Advances in the research of application of virtual reality technology in war trauma treatment training].
    Peng Y; Lyu LY; Ma B
    Zhonghua Shao Shang Za Zhi; 2020 Jun; 36(6):515-518. PubMed ID: 32594716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.