BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 34348892)

  • 1. Repurposing RNA sequencing for discovery of RNA modifications in clinical cohorts.
    Tan KT; Ding LW; Wu CS; Tenen DG; Yang H
    Sci Adv; 2021 Aug; 7(32):. PubMed ID: 34348892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring the epitranscriptome by native RNA sequencing.
    Begik O; Mattick JS; Novoa EM
    RNA; 2022 Nov; 28(11):1430-1439. PubMed ID: 36104106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of differential RNA modifications from nanopore direct RNA sequencing with xPore.
    Pratanwanich PN; Yao F; Chen Y; Koh CWQ; Wan YK; Hendra C; Poon P; Goh YT; Yap PML; Chooi JY; Chng WJ; Ng SB; Thiery A; Goh WSS; Göke J
    Nat Biotechnol; 2021 Nov; 39(11):1394-1402. PubMed ID: 34282325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detecting the epitranscriptome.
    Sarkar A; Gasperi W; Begley U; Nevins S; Huber SM; Dedon PC; Begley TJ
    Wiley Interdiscip Rev RNA; 2021 Nov; 12(6):e1663. PubMed ID: 33987958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decoding the Atlas of RNA Modifications from Epitranscriptome Sequencing Data.
    Zhang XQ; Yang JH
    Methods Mol Biol; 2019; 1870():107-124. PubMed ID: 30539550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RMBase: a resource for decoding the landscape of RNA modifications from high-throughput sequencing data.
    Sun WJ; Li JH; Liu S; Wu J; Zhou H; Qu LH; Yang JH
    Nucleic Acids Res; 2016 Jan; 44(D1):D259-65. PubMed ID: 26464443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Weakly supervised learning of RNA modifications from low-resolution epitranscriptome data.
    Huang D; Song B; Wei J; Su J; Coenen F; Meng J
    Bioinformatics; 2021 Jul; 37(Suppl_1):i222-i230. PubMed ID: 34252943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RMBase v2.0: deciphering the map of RNA modifications from epitranscriptome sequencing data.
    Xuan JJ; Sun WJ; Lin PH; Zhou KR; Liu S; Zheng LL; Qu LH; Yang JH
    Nucleic Acids Res; 2018 Jan; 46(D1):D327-D334. PubMed ID: 29040692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epitranscriptomic Code and Its Alterations in Human Disease.
    Kadumuri RV; Janga SC
    Trends Mol Med; 2018 Oct; 24(10):886-903. PubMed ID: 30120023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PEA: an integrated R toolkit for plant epitranscriptome analysis.
    Zhai J; Song J; Cheng Q; Tang Y; Ma C
    Bioinformatics; 2018 Nov; 34(21):3747-3749. PubMed ID: 29850798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA Post-Transcriptional Modification Mapping Data Analysis Using RNA Framework.
    Manfredonia I; Incarnato D
    Methods Mol Biol; 2021; 2298():3-13. PubMed ID: 34085235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deciphering RNA modifications at base resolution: from chemistry to biology.
    Debnath TK; Xhemalçe B
    Brief Funct Genomics; 2021 Mar; 20(2):77-85. PubMed ID: 33454749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of post-transcriptional modifications during development.
    Hamar R; Varga M
    Biol Futur; 2023 Jun; 74(1-2):45-59. PubMed ID: 36481986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DirectRMDB: a database of post-transcriptional RNA modifications unveiled from direct RNA sequencing technology.
    Zhang Y; Jiang J; Ma J; Wei Z; Wang Y; Song B; Meng J; Jia G; de Magalhães JP; Rigden DJ; Hang D; Chen K
    Nucleic Acids Res; 2023 Jan; 51(D1):D106-D116. PubMed ID: 36382409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transfer learning enables identification of multiple types of RNA modifications using nanopore direct RNA sequencing.
    Wu Y; Shao W; Yan M; Wang Y; Xu P; Huang G; Li X; Gregory BD; Yang J; Wang H; Yu X
    Nat Commun; 2024 May; 15(1):4049. PubMed ID: 38744925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Informatics Pipeline for Profiling and Annotating RNA Modifications.
    Liu Q; Lang X; Gregory RI
    Methods Mol Biol; 2021; 2298():15-27. PubMed ID: 34085236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct RNA sequencing enables m
    Lorenz DA; Sathe S; Einstein JM; Yeo GW
    RNA; 2020 Jan; 26(1):19-28. PubMed ID: 31624092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deciphering the epitranscriptome: A green perspective.
    Burgess A; David R; Searle IR
    J Integr Plant Biol; 2016 Oct; 58(10):822-835. PubMed ID: 27172004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Silico Identification of RNA Modifications from High-Throughput Sequencing Data Using HAMR.
    Kuksa PP; Leung YY; Vandivier LE; Anderson Z; Gregory BD; Wang LS
    Methods Mol Biol; 2017; 1562():211-229. PubMed ID: 28349463
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection technologies for RNA modifications.
    Zhang Y; Lu L; Li X
    Exp Mol Med; 2022 Oct; 54(10):1601-1616. PubMed ID: 36266445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.