BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 34348892)

  • 21. Detection technologies for RNA modifications.
    Zhang Y; Lu L; Li X
    Exp Mol Med; 2022 Oct; 54(10):1601-1616. PubMed ID: 36266445
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Methods for RNA Modification Mapping Using Deep Sequencing: Established and New Emerging Technologies.
    Motorin Y; Helm M
    Genes (Basel); 2019 Jan; 10(1):. PubMed ID: 30634534
    [TBL] [Abstract][Full Text] [Related]  

  • 23. HAMR: High-Throughput Annotation of Modified Ribonucleotides.
    Vandivier LE; Anderson ZD; Gregory BD
    Methods Mol Biol; 2019; 1870():51-67. PubMed ID: 30539546
    [TBL] [Abstract][Full Text] [Related]  

  • 24. RNA Modifications and RNA Metabolism in Neurological Disease Pathogenesis.
    Chatterjee B; Shen CJ; Majumder P
    Int J Mol Sci; 2021 Nov; 22(21):. PubMed ID: 34769301
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The birth of the Epitranscriptome: deciphering the function of RNA modifications.
    Saletore Y; Meyer K; Korlach J; Vilfan ID; Jaffrey S; Mason CE
    Genome Biol; 2012 Oct; 13(10):175. PubMed ID: 23113984
    [TBL] [Abstract][Full Text] [Related]  

  • 26. RNA Framework: an all-in-one toolkit for the analysis of RNA structures and post-transcriptional modifications.
    Incarnato D; Morandi E; Simon LM; Oliviero S
    Nucleic Acids Res; 2018 Sep; 46(16):e97. PubMed ID: 29893890
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A general LC-MS-based RNA sequencing method for direct analysis of multiple-base modifications in RNA mixtures.
    Zhang N; Shi S; Jia TZ; Ziegler A; Yoo B; Yuan X; Li W; Zhang S
    Nucleic Acids Res; 2019 Nov; 47(20):e125. PubMed ID: 31504795
    [TBL] [Abstract][Full Text] [Related]  

  • 28. WHISTLE: a high-accuracy map of the human N6-methyladenosine (m6A) epitranscriptome predicted using a machine learning approach.
    Chen K; Wei Z; Zhang Q; Wu X; Rong R; Lu Z; Su J; de Magalhães JP; Rigden DJ; Meng J
    Nucleic Acids Res; 2019 Apr; 47(7):e41. PubMed ID: 30993345
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Epitranscriptome sequencing technologies: decoding RNA modifications.
    Li X; Xiong X; Yi C
    Nat Methods; 2016 Dec; 14(1):23-31. PubMed ID: 28032622
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Integrative analyses of the RNA modification machinery reveal tissue- and cancer-specific signatures.
    Begik O; Lucas MC; Liu H; Ramirez JM; Mattick JS; Novoa EM
    Genome Biol; 2020 May; 21(1):97. PubMed ID: 32375858
    [TBL] [Abstract][Full Text] [Related]  

  • 31. HAMR: high-throughput annotation of modified ribonucleotides.
    Ryvkin P; Leung YY; Silverman IM; Childress M; Valladares O; Dragomir I; Gregory BD; Wang LS
    RNA; 2013 Dec; 19(12):1684-92. PubMed ID: 24149843
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Detection of internal N7-methylguanosine (m7G) RNA modifications by mutational profiling sequencing.
    Enroth C; Poulsen LD; Iversen S; Kirpekar F; Albrechtsen A; Vinther J
    Nucleic Acids Res; 2019 Nov; 47(20):e126. PubMed ID: 31504776
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The epitranscriptome beyond m
    Wiener D; Schwartz S
    Nat Rev Genet; 2021 Feb; 22(2):119-131. PubMed ID: 33188361
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Probing RNA Modification Status at Single-Nucleotide Resolution in Total RNA.
    Liu N; Pan T
    Methods Enzymol; 2015; 560():149-59. PubMed ID: 26253970
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Misincorporation signatures for detecting modifications in mRNA: Not as simple as it sounds.
    Sas-Chen A; Schwartz S
    Methods; 2019 Mar; 156():53-59. PubMed ID: 30359724
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Accurate characterization of
    Wang J; Toffano-Nioche C; Lorieux F; Gautheret D; Lehmann J
    RNA Biol; 2021 Jan; 18(1):33-46. PubMed ID: 32618488
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Integrated genomic analysis of mitochondrial RNA processing in human cancers.
    Idaghdour Y; Hodgkinson A
    Genome Med; 2017 Apr; 9(1):36. PubMed ID: 28420414
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Decoding co-/post-transcriptional complexities of plant transcriptomes and epitranscriptome using next-generation sequencing technologies.
    Reddy ASN; Huang J; Syed NH; Ben-Hur A; Dong S; Gu L
    Biochem Soc Trans; 2020 Dec; 48(6):2399-2414. PubMed ID: 33196096
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reading the Epitranscriptome: New Techniques and Perspectives.
    Vandivier LE; Gregory BD
    Enzymes; 2017; 41():269-298. PubMed ID: 28601224
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Detecting RNA modifications in the epitranscriptome: predict and validate.
    Helm M; Motorin Y
    Nat Rev Genet; 2017 May; 18(5):275-291. PubMed ID: 28216634
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.