BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 34348892)

  • 41. Shaping the Bacterial Epitranscriptome-5'-Terminal and Internal RNA Modifications.
    Schauerte M; Pozhydaieva N; Höfer K
    Adv Biol (Weinh); 2021 Aug; 5(8):e2100834. PubMed ID: 34121369
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nucleotide resolution sequencing of N4-acetylcytidine in RNA.
    Thomas JM; Bryson KM; Meier JL
    Methods Enzymol; 2019; 621():31-51. PubMed ID: 31128786
    [TBL] [Abstract][Full Text] [Related]  

  • 43. High-Throughput Small RNA Sequencing Enhanced by AlkB-Facilitated RNA de-Methylation (ARM-Seq).
    Hrabeta-Robinson E; Marcus E; Cozen AE; Phizicky EM; Lowe TM
    Methods Mol Biol; 2017; 1562():231-243. PubMed ID: 28349464
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comprehensive review and assessment of computational methods for predicting RNA post-transcriptional modification sites from RNA sequences.
    Chen Z; Zhao P; Li F; Wang Y; Smith AI; Webb GI; Akutsu T; Baggag A; Bensmail H; Song J
    Brief Bioinform; 2020 Sep; 21(5):1676-1696. PubMed ID: 31714956
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Detection of RNA modifications.
    Kellner S; Burhenne J; Helm M
    RNA Biol; 2010; 7(2):237-47. PubMed ID: 20224293
    [TBL] [Abstract][Full Text] [Related]  

  • 46. EpiNano: Detection of m
    Liu H; Begik O; Novoa EM
    Methods Mol Biol; 2021; 2298():31-52. PubMed ID: 34085237
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Epitranscriptome: Review of Top 25 Most-Studied RNA Modifications.
    Arzumanian VA; Dolgalev GV; Kurbatov IY; Kiseleva OI; Poverennaya EV
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430347
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The rise of epitranscriptomics: recent developments and future directions.
    Cerneckis J; Ming GL; Song H; He C; Shi Y
    Trends Pharmacol Sci; 2024 Jan; 45(1):24-38. PubMed ID: 38103979
    [TBL] [Abstract][Full Text] [Related]  

  • 49. dreamBase: DNA modification, RNA regulation and protein binding of expressed pseudogenes in human health and disease.
    Zheng LL; Zhou KR; Liu S; Zhang DY; Wang ZL; Chen ZR; Yang JH; Qu LH
    Nucleic Acids Res; 2018 Jan; 46(D1):D85-D91. PubMed ID: 29059382
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Transcriptome-wide profiling of multiple RNA modifications simultaneously at single-base resolution.
    Khoddami V; Yerra A; Mosbruger TL; Fleming AM; Burrows CJ; Cairns BR
    Proc Natl Acad Sci U S A; 2019 Apr; 116(14):6784-6789. PubMed ID: 30872485
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Understanding RNA modifications: the promises and technological bottlenecks of the 'epitranscriptome'.
    Schaefer M; Kapoor U; Jantsch MF
    Open Biol; 2017 May; 7(5):. PubMed ID: 28566301
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The role of m
    Nombela P; Miguel-López B; Blanco S
    Mol Cancer; 2021 Jan; 20(1):18. PubMed ID: 33461542
    [TBL] [Abstract][Full Text] [Related]  

  • 53. On the optimal design of metabolic RNA labeling experiments.
    Uvarovskii A; Naarmann-de Vries IS; Dieterich C
    PLoS Comput Biol; 2019 Aug; 15(8):e1007252. PubMed ID: 31390362
    [TBL] [Abstract][Full Text] [Related]  

  • 54. mito-Ψ-Seq: A High-Throughput Method for Systematic Mapping of Pseudouridine Within Mitochondrial RNA.
    Sas-Chen A; Nir R; Schwartz S
    Methods Mol Biol; 2021; 2192():103-115. PubMed ID: 33230769
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Decoding the epitranscriptional landscape from native RNA sequences.
    Jenjaroenpun P; Wongsurawat T; Wadley TD; Wassenaar TM; Liu J; Dai Q; Wanchai V; Akel NS; Jamshidi-Parsian A; Franco AT; Boysen G; Jennings ML; Ussery DW; He C; Nookaew I
    Nucleic Acids Res; 2021 Jan; 49(2):e7. PubMed ID: 32710622
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biochemical and Next Generation Sequencing Approaches to Study RNA Regulation.
    Wagner EJ; Goldstrohm AC
    Methods; 2019 Feb; 155():1-2. PubMed ID: 30797262
    [No Abstract]   [Full Text] [Related]  

  • 57. RNA modifications and cancer.
    Haruehanroengra P; Zheng YY; Zhou Y; Huang Y; Sheng J
    RNA Biol; 2020 Nov; 17(11):1560-1575. PubMed ID: 31994439
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Sequoia: an interactive visual analytics platform for interpretation and feature extraction from nanopore sequencing datasets.
    Koonchanok R; Daulatabad SV; Mir Q; Reda K; Janga SC
    BMC Genomics; 2021 Jul; 22(1):513. PubMed ID: 34233619
    [TBL] [Abstract][Full Text] [Related]  

  • 59. RMDisease: a database of genetic variants that affect RNA modifications, with implications for epitranscriptome pathogenesis.
    Chen K; Song B; Tang Y; Wei Z; Xu Q; Su J; de Magalhães JP; Rigden DJ; Meng J
    Nucleic Acids Res; 2021 Jan; 49(D1):D1396-D1404. PubMed ID: 33010174
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Distinguishing RNA modifications from noise in epitranscriptome maps.
    Grozhik AV; Jaffrey SR
    Nat Chem Biol; 2018 Feb; 14(3):215-225. PubMed ID: 29443978
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.