These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 34348892)

  • 61. High-resolution genomic analysis of human mitochondrial RNA sequence variation.
    Hodgkinson A; Idaghdour Y; Gbeha E; Grenier JC; Hip-Ki E; Bruat V; Goulet JP; de Malliard T; Awadalla P
    Science; 2014 Apr; 344(6182):413-5. PubMed ID: 24763589
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Instrumental analysis of RNA modifications.
    Yoluç Y; Ammann G; Barraud P; Jora M; Limbach PA; Motorin Y; Marchand V; Tisné C; Borland K; Kellner S
    Crit Rev Biochem Mol Biol; 2021 Apr; 56(2):178-204. PubMed ID: 33618598
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Enhancing Epitranscriptome Module Detection from m
    Chen K; Wei Z; Liu H; de Magalhães JP; Rong R; Lu Z; Meng J
    Biomed Res Int; 2018; 2018():2075173. PubMed ID: 30013979
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Messenger RNA Modifications in Plants.
    Shen L; Liang Z; Wong CE; Yu H
    Trends Plant Sci; 2019 Apr; 24(4):328-341. PubMed ID: 30745055
    [TBL] [Abstract][Full Text] [Related]  

  • 65. High-throughput single-base resolution mapping of RNA 2΄-O-methylated residues.
    Incarnato D; Anselmi F; Morandi E; Neri F; Maldotti M; Rapelli S; Parlato C; Basile G; Oliviero S
    Nucleic Acids Res; 2017 Feb; 45(3):1433-1441. PubMed ID: 28180324
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Direct Sequencing of tRNA by 2D-HELS-AA MS Seq Reveals Its Different Isoforms and Dynamic Base Modifications.
    Zhang N; Shi S; Wang X; Ni W; Yuan X; Duan J; Jia TZ; Yoo B; Ziegler A; Russo JJ; Li W; Zhang S
    ACS Chem Biol; 2020 Jun; 15(6):1464-1472. PubMed ID: 32364699
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Bioinformatic tools for epitranscriptomics.
    Taguchi YH
    Am J Physiol Cell Physiol; 2023 Feb; 324(2):C447-C457. PubMed ID: 36468841
    [TBL] [Abstract][Full Text] [Related]  

  • 68. High-throughput sequencing for 1-methyladenosine (m(1)A) mapping in RNA.
    Tserovski L; Marchand V; Hauenschild R; Blanloeil-Oillo F; Helm M; Motorin Y
    Methods; 2016 Sep; 107():110-21. PubMed ID: 26922842
    [TBL] [Abstract][Full Text] [Related]  

  • 69. RNA Modifications and Epigenetics in Modulation of Lung Cancer and Pulmonary Diseases.
    Teng PC; Liang Y; Yarmishyn AA; Hsiao YJ; Lin TY; Lin TW; Teng YC; Yang YP; Wang ML; Chien CS; Luo YH; Chen YM; Hsu PK; Chiou SH; Chien Y
    Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638933
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Integrative analyses of transcriptome data reveal the mechanisms of post-transcriptional regulation.
    Wang J
    Brief Funct Genomics; 2021 Jul; 20(4):207-212. PubMed ID: 33615339
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Deciphering the molecular mechanisms of epitranscriptome regulation in cancer.
    Han SH; Choe J
    BMB Rep; 2021 Feb; 54(2):89-97. PubMed ID: 33298243
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Traces of post-transcriptional RNA modifications in deep sequencing data.
    Findeiss S; Langenberger D; Stadler PF; Hoffmann S
    Biol Chem; 2011 Apr; 392(4):305-13. PubMed ID: 21345160
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Epitranscriptomic subtyping, visualization, and denoising by global motif visualization.
    Liu J; Huang T; Yao J; Zhao T; Zhang Y; Zhang R
    Nat Commun; 2023 Sep; 14(1):5944. PubMed ID: 37741827
    [TBL] [Abstract][Full Text] [Related]  

  • 74. RNAmod: an integrated system for the annotation of mRNA modifications.
    Liu Q; Gregory RI
    Nucleic Acids Res; 2019 Jul; 47(W1):W548-W555. PubMed ID: 31147718
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Comprehensive Analysis of Large-Scale Transcriptomes from Multiple Cancer Types.
    Nong B; Guo M; Wang W; Songyang Z; Xiong Y
    Genes (Basel); 2021 Nov; 12(12):. PubMed ID: 34946814
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Single-cell analysis of the epitranscriptome: RNA modifications under the microscope.
    Crespo-García E; Bueno-Costa A; Esteller M
    RNA Biol; 2024 Jan; 21(1):1-8. PubMed ID: 38368619
    [TBL] [Abstract][Full Text] [Related]  

  • 77. "Mining the Epitranscriptome: Detection of RNA editing and RNA modifications".
    Jantsch MF; Schaefer MR
    Methods; 2019 Mar; 156():1-4. PubMed ID: 30825978
    [No Abstract]   [Full Text] [Related]  

  • 78. Critical Roles of
    Asada K; Bolatkan A; Takasawa K; Komatsu M; Kaneko S; Hamamoto R
    Biomolecules; 2020 Jul; 10(7):. PubMed ID: 32709063
    [TBL] [Abstract][Full Text] [Related]  

  • 79. ConsRM: collection and large-scale prediction of the evolutionarily conserved RNA methylation sites, with implications for the functional epitranscriptome.
    Song B; Chen K; Tang Y; Wei Z; Su J; de Magalhães JP; Rigden DJ; Meng J
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 33993206
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Charting the unknown epitranscriptome.
    Novoa EM; Mason CE; Mattick JS
    Nat Rev Mol Cell Biol; 2017 Jun; 18(6):339-340. PubMed ID: 28488699
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.