These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

389 related articles for article (PubMed ID: 34349130)

  • 1. Real-world artificial intelligence-based opportunistic screening for diabetic retinopathy in endocrinology and indigenous healthcare settings in Australia.
    Scheetz J; Koca D; McGuinness M; Holloway E; Tan Z; Zhu Z; O'Day R; Sandhu S; MacIsaac RJ; Gilfillan C; Turner A; Keel S; He M
    Sci Rep; 2021 Aug; 11(1):15808. PubMed ID: 34349130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of 21 artificial intelligence algorithms in automated diabetic retinopathy screening using handheld fundus camera.
    Kubin AM; Huhtinen P; Ohtonen P; Keskitalo A; Wirkkala J; Hautala N
    Ann Med; 2024 Dec; 56(1):2352018. PubMed ID: 38738798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feasibility and patient acceptability of a novel artificial intelligence-based screening model for diabetic retinopathy at endocrinology outpatient services: a pilot study.
    Keel S; Lee PY; Scheetz J; Li Z; Kotowicz MA; MacIsaac RJ; He M
    Sci Rep; 2018 Mar; 8(1):4330. PubMed ID: 29531299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prospective evaluation of an artificial intelligence-enabled algorithm for automated diabetic retinopathy screening of 30 000 patients.
    Heydon P; Egan C; Bolter L; Chambers R; Anderson J; Aldington S; Stratton IM; Scanlon PH; Webster L; Mann S; du Chemin A; Owen CG; Tufail A; Rudnicka AR
    Br J Ophthalmol; 2021 May; 105(5):723-728. PubMed ID: 32606081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feasibility and acceptance of artificial intelligence-based diabetic retinopathy screening in Rwanda.
    Whitestone N; Nkurikiye J; Patnaik JL; Jaccard N; Lanouette G; Cherwek DH; Congdon N; Mathenge W
    Br J Ophthalmol; 2024 May; 108(6):840-845. PubMed ID: 37541766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Artificial intelligence using deep learning to screen for referable and vision-threatening diabetic retinopathy in Africa: a clinical validation study.
    Bellemo V; Lim ZW; Lim G; Nguyen QD; Xie Y; Yip MYT; Hamzah H; Ho J; Lee XQ; Hsu W; Lee ML; Musonda L; Chandran M; Chipalo-Mutati G; Muma M; Tan GSW; Sivaprasad S; Menon G; Wong TY; Ting DSW
    Lancet Digit Health; 2019 May; 1(1):e35-e44. PubMed ID: 33323239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of a novel artificial intelligence-based screening system for diabetic retinopathy in community of China: a real-world study.
    Ming S; Xie K; Lei X; Yang Y; Zhao Z; Li S; Jin X; Lei B
    Int Ophthalmol; 2021 Apr; 41(4):1291-1299. PubMed ID: 33389425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Medios- An offline, smartphone-based artificial intelligence algorithm for the diagnosis of diabetic retinopathy.
    Sosale B; Sosale AR; Murthy H; Sengupta S; Naveenam M
    Indian J Ophthalmol; 2020 Feb; 68(2):391-395. PubMed ID: 31957735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prevalence of diabetic retinopathy and reduced vision among indigenous Australians in the nurse-led integrated Diabetes Education and Eye Screening study in a regional primary care clinic.
    Atkinson-Briggs S; Jenkins A; Keech A; Ryan C; Brazionis L;
    Intern Med J; 2023 Jul; 53(7):1188-1195. PubMed ID: 34779559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implementing and evaluating a fully functional AI-enabled model for chronic eye disease screening in a real clinical environment.
    Skevas C; de Olaguer NP; Lleó A; Thiwa D; Schroeter U; Lopes IV; Mautone L; Linke SJ; Spitzer MS; Yap D; Xiao D
    BMC Ophthalmol; 2024 Feb; 24(1):51. PubMed ID: 38302908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pivotal Evaluation of an Artificial Intelligence System for Autonomous Detection of Referrable and Vision-Threatening Diabetic Retinopathy.
    Ipp E; Liljenquist D; Bode B; Shah VN; Silverstein S; Regillo CD; Lim JI; Sadda S; Domalpally A; Gray G; Bhaskaranand M; Ramachandra C; Solanki K;
    JAMA Netw Open; 2021 Nov; 4(11):e2134254. PubMed ID: 34779843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-world evaluation of smartphone-based artificial intelligence to screen for diabetic retinopathy in Dominica: a clinical validation study.
    Kemp O; Bascaran C; Cartwright E; McQuillan L; Matthew N; Shillingford-Ricketts H; Zondervan M; Foster A; Burton M
    BMJ Open Ophthalmol; 2023 Dec; 8(1):. PubMed ID: 38135351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of Automated Screening for Referable Diabetic Retinopathy With an Autonomous Diagnostic Artificial Intelligence System in a Spanish Population.
    Shah A; Clarida W; Amelon R; Hernaez-Ortega MC; Navea A; Morales-Olivas J; Dolz-Marco R; Verbraak F; Jorda PP; van der Heijden AA; Peris Martinez C
    J Diabetes Sci Technol; 2021 May; 15(3):655-663. PubMed ID: 32174153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Using artificial intelligence as an initial triage strategy in diabetic retinopathy screening program in China].
    Li ZX; Zhang J; Fong N; He MG
    Zhonghua Yi Xue Za Zhi; 2020 Dec; 100(48):3835-3840. PubMed ID: 33371627
    [No Abstract]   [Full Text] [Related]  

  • 15. Artificial intelligence-supported diabetic retinopathy screening in Tanzania: rationale and design of a randomised controlled trial.
    Cleland CR; Bascaran C; Makupa W; Shilio B; Sandi FA; Philippin H; Marques AP; Egan C; Tufail A; Keane PA; Denniston AK; Macleod D; Burton MJ
    BMJ Open; 2024 Jan; 14(1):e075055. PubMed ID: 38272554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Screening for diabetic retinopathy and reduced vision among Indigenous Australians in Top End primary care health services: a TEAMSnet sub-study.
    Quinn N; Yang F; Ryan C; Bursell SE; Keech A; Atkinson-Briggs S; Jenkins A; Brazionis L;
    Intern Med J; 2021 Nov; 51(11):1897-1905. PubMed ID: 33196133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. What are the perceptions and concerns of people living with diabetes and National Health Service staff around the potential implementation of AI-assisted screening for diabetic eye disease? Development and validation of a survey for use in a secondary care screening setting.
    Willis K; Chaudhry UAR; Chandrasekaran L; Wahlich C; Olvera-Barrios A; Chambers R; Bolter L; Anderson J; Barman SA; Fajtl J; Welikala R; Egan C; Tufail A; Owen CG; Rudnicka A; ;
    BMJ Open; 2023 Nov; 13(11):e075558. PubMed ID: 37968006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Value of Automated Diabetic Retinopathy Screening with the EyeArt System: A Study of More Than 100,000 Consecutive Encounters from People with Diabetes.
    Bhaskaranand M; Ramachandra C; Bhat S; Cuadros J; Nittala MG; Sadda SR; Solanki K
    Diabetes Technol Ther; 2019 Nov; 21(11):635-643. PubMed ID: 31335200
    [No Abstract]   [Full Text] [Related]  

  • 19. Automated Diabetic Retinopathy Image Assessment Software: Diagnostic Accuracy and Cost-Effectiveness Compared with Human Graders.
    Tufail A; Rudisill C; Egan C; Kapetanakis VV; Salas-Vega S; Owen CG; Lee A; Louw V; Anderson J; Liew G; Bolter L; Srinivas S; Nittala M; Sadda S; Taylor P; Rudnicka AR
    Ophthalmology; 2017 Mar; 124(3):343-351. PubMed ID: 28024825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An observational study to assess if automated diabetic retinopathy image assessment software can replace one or more steps of manual imaging grading and to determine their cost-effectiveness.
    Tufail A; Kapetanakis VV; Salas-Vega S; Egan C; Rudisill C; Owen CG; Lee A; Louw V; Anderson J; Liew G; Bolter L; Bailey C; Sadda S; Taylor P; Rudnicka AR
    Health Technol Assess; 2016 Dec; 20(92):1-72. PubMed ID: 27981917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.