These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 34349143)
1. Agonist dependency of the second phase access of β-arrestin 2 to the heteromeric µ-V1b receptor. Ngamlertwong N; Tsuchiya H; Mochimaru Y; Azuma M; Kuchimaru T; Koshimizu TA Sci Rep; 2021 Aug; 11(1):15813. PubMed ID: 34349143 [TBL] [Abstract][Full Text] [Related]
2. Complex formation between the vasopressin 1b receptor, β-arrestin-2, and the μ-opioid receptor underlies morphine tolerance. Koshimizu TA; Honda K; Nagaoka-Uozumi S; Ichimura A; Kimura I; Nakaya M; Sakai N; Shibata K; Ushijima K; Fujimura A; Hirasawa A; Kurose H; Tsujimoto G; Tanoue A; Takano Y Nat Neurosci; 2018 Jun; 21(6):820-833. PubMed ID: 29713080 [TBL] [Abstract][Full Text] [Related]
3. Pharmacological and genetic manipulations at the µ-opioid receptor reveal arrestin-3 engagement limits analgesic tolerance and does not exacerbate respiratory depression in mice. He L; Gooding SW; Lewis E; Felth LC; Gaur A; Whistler JL Neuropsychopharmacology; 2021 Dec; 46(13):2241-2249. PubMed ID: 34257415 [TBL] [Abstract][Full Text] [Related]
4. Subcellular localization and internalization of the vasopressin V1B receptor. Kashiwazaki A; Fujiwara Y; Tsuchiya H; Sakai N; Shibata K; Koshimizu TA Eur J Pharmacol; 2015 Oct; 765():291-9. PubMed ID: 26318147 [TBL] [Abstract][Full Text] [Related]
6. V Perkovska S; Méjean C; Ayoub MA; Li J; Hemery F; Corbani M; Laguette N; Ventura MA; Orcel H; Durroux T; Mouillac B; Mendre C Traffic; 2018 Jan; 19(1):58-82. PubMed ID: 29044966 [TBL] [Abstract][Full Text] [Related]
7. Usefulness for the combination of G-protein- and β-arrestin-biased ligands of μ-opioid receptors: Prevention of antinociceptive tolerance. Mori T; Kuzumaki N; Arima T; Narita M; Tateishi R; Kondo T; Hamada Y; Kuwata H; Kawata M; Yamazaki M; Sugita K; Matsuzawa A; Baba K; Yamauchi T; Higashiyama K; Nonaka M; Miyano K; Uezono Y; Narita M Mol Pain; 2017; 13():1744806917740030. PubMed ID: 29056067 [TBL] [Abstract][Full Text] [Related]
8. Mu-opioid receptor desensitization by beta-arrestin-2 determines morphine tolerance but not dependence. Bohn LM; Gainetdinov RR; Lin FT; Lefkowitz RJ; Caron MG Nature; 2000 Dec; 408(6813):720-3. PubMed ID: 11130073 [TBL] [Abstract][Full Text] [Related]
9. Agonists at the δ-opioid receptor modify the binding of µ-receptor agonists to the µ-δ receptor hetero-oligomer. Kabli N; Martin N; Fan T; Nguyen T; Hasbi A; Balboni G; O'Dowd BF; George SR Br J Pharmacol; 2010 Nov; 161(5):1122-36. PubMed ID: 20977461 [TBL] [Abstract][Full Text] [Related]
10. miR-365 targets β-arrestin 2 to reverse morphine tolerance in rats. Wang J; Xu W; Zhong T; Song Z; Zou Y; Ding Z; Guo Q; Dong X; Zou W Sci Rep; 2016 Dec; 6():38285. PubMed ID: 27922111 [TBL] [Abstract][Full Text] [Related]
11. p38 MAPK and beta-arrestin 2 mediate functional interactions between endogenous micro-opioid and alpha2A-adrenergic receptors in neurons. Tan M; Walwyn WM; Evans CJ; Xie CW J Biol Chem; 2009 Mar; 284(10):6270-81. PubMed ID: 19126537 [TBL] [Abstract][Full Text] [Related]
12. Central HIV-1 Tat exposure elevates anxiety and fear conditioned responses of male mice concurrent with altered mu-opioid receptor-mediated G-protein activation and β-arrestin 2 activity in the forebrain. Hahn YK; Paris JJ; Lichtman AH; Hauser KF; Sim-Selley LJ; Selley DE; Knapp PE Neurobiol Dis; 2016 Aug; 92(Pt B):124-36. PubMed ID: 26845176 [TBL] [Abstract][Full Text] [Related]
13. Enhancement of morphine analgesia and prevention of morphine tolerance by downregulation of β-arrestin 2 with antigene RNAs in mice. Bu H; Liu X; Tian X; Yang H; Gao F Int J Neurosci; 2015 Jan; 125(1):56-65. PubMed ID: 24555516 [TBL] [Abstract][Full Text] [Related]
14. β-Arrestin-2 knockout prevents development of cellular μ-opioid receptor tolerance but does not affect opioid-withdrawal-related adaptations in single PAG neurons. Connor M; Bagley EE; Chieng BC; Christie MJ Br J Pharmacol; 2015 Jan; 172(2):492-500. PubMed ID: 24597632 [TBL] [Abstract][Full Text] [Related]
15. Mechanism of β-arrestin recruitment by the μ-opioid G protein-coupled receptor. Mafi A; Kim SK; Goddard WA Proc Natl Acad Sci U S A; 2020 Jul; 117(28):16346-16355. PubMed ID: 32601232 [TBL] [Abstract][Full Text] [Related]
16. Opioid tolerance: is there a dialogue between glutamate and beta-arrestin? Chiao YC; Wong CS Acta Anaesthesiol Taiwan; 2004 Jun; 42(2):93-101. PubMed ID: 15346705 [TBL] [Abstract][Full Text] [Related]
17. New topics in vasopressin receptors and approach to novel drugs: involvement of vasopressin V1a and V1b receptors in nociceptive responses and morphine-induced effects. Honda K; Takano Y J Pharmacol Sci; 2009 Jan; 109(1):38-43. PubMed ID: 19151540 [TBL] [Abstract][Full Text] [Related]
18. Palmitoylation of the V2 vasopressin receptor carboxyl tail enhances beta-arrestin recruitment leading to efficient receptor endocytosis and ERK1/2 activation. Charest PG; Bouvier M J Biol Chem; 2003 Oct; 278(42):41541-51. PubMed ID: 12900404 [TBL] [Abstract][Full Text] [Related]
19. Antinociceptive potentiation and attenuation of tolerance by intrathecal β-arrestin 2 small interfering RNA in rats. Yang CH; Huang HW; Chen KH; Chen YS; Sheen-Chen SM; Lin CR Br J Anaesth; 2011 Nov; 107(5):774-81. PubMed ID: 21926413 [TBL] [Abstract][Full Text] [Related]
20. β-Arrestin 2 and ERK1/2 Are Important Mediators Engaged in Close Cooperation between TRPV1 and µ-Opioid Receptors in the Plasma Membrane. Melkes B; Markova V; Hejnova L; Novotny J Int J Mol Sci; 2020 Jun; 21(13):. PubMed ID: 32610605 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]