These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 34349345)
1. An NK cell line (NK92-41BB) expressing high levels of granzyme is engineered to express the high affinity chimeric genes CD16/CAR. Zhao H; Zhou Z; Li G; Liu G; Lin S; Chen W; Xiong S Cytotechnology; 2021 Aug; 73(4):539-553. PubMed ID: 34349345 [TBL] [Abstract][Full Text] [Related]
2. An NK cell line (haNK) expressing high levels of granzyme and engineered to express the high affinity CD16 allele. Jochems C; Hodge JW; Fantini M; Fujii R; Morillon YM; Greiner JW; Padget MR; Tritsch SR; Tsang KY; Campbell KS; Klingemann H; Boissel L; Rabizadeh S; Soon-Shiong P; Schlom J Oncotarget; 2016 Dec; 7(52):86359-86373. PubMed ID: 27861156 [TBL] [Abstract][Full Text] [Related]
3. A potential therapy for chordoma via antibody-dependent cell-mediated cytotoxicity employing NK or high-affinity NK cells in combination with cetuximab. Fujii R; Schlom J; Hodge JW J Neurosurg; 2018 May; 128(5):1419-1427. PubMed ID: 28753113 [TBL] [Abstract][Full Text] [Related]
4. ADCC employing an NK cell line (haNK) expressing the high affinity CD16 allele with avelumab, an anti-PD-L1 antibody. Jochems C; Hodge JW; Fantini M; Tsang KY; Vandeveer AJ; Gulley JL; Schlom J Int J Cancer; 2017 Aug; 141(3):583-593. PubMed ID: 28477372 [TBL] [Abstract][Full Text] [Related]
6. Gene-modified NK-92MI cells expressing a chimeric CD16-BB-ζ or CD64-BB-ζ receptor exhibit enhanced cancer-killing ability in combination with therapeutic antibody. Chen Y; You F; Jiang L; Li J; Zhu X; Bao Y; Sun X; Tang X; Meng H; An G; Zhang B; Yang L Oncotarget; 2017 Jun; 8(23):37128-37139. PubMed ID: 28415754 [TBL] [Abstract][Full Text] [Related]
7. Anti-tumor effects of NK cells and anti-PD-L1 antibody with antibody-dependent cellular cytotoxicity in PD-L1-positive cancer cell lines. Park JE; Kim SE; Keam B; Park HR; Kim S; Kim M; Kim TM; Doh J; Kim DW; Heo DS J Immunother Cancer; 2020 Aug; 8(2):. PubMed ID: 32830112 [TBL] [Abstract][Full Text] [Related]
9. Leveraging CD16 fusion receptors to remodel the immune response for enhancing anti-tumor immunotherapy in iPSC-derived NK cells. Meng F; Zhang S; Xie J; Zhou Y; Wu Q; Lu B; Zhou S; Zhao X; Li Y J Hematol Oncol; 2023 Jun; 16(1):62. PubMed ID: 37316891 [TBL] [Abstract][Full Text] [Related]
10. High-affinity CD16-polymorphism and Fc-engineered antibodies enable activity of CD16-chimeric antigen receptor-modified T cells for cancer therapy. Rataj F; Jacobi SJ; Stoiber S; Asang F; Ogonek J; Tokarew N; Cadilha BL; van Puijenbroek E; Heise C; Duewell P; Endres S; Klein C; Kobold S Br J Cancer; 2019 Jan; 120(1):79-87. PubMed ID: 30429531 [TBL] [Abstract][Full Text] [Related]
11. Potentiation of natural killer cells to overcome cancer resistance to NK cell-based therapy and to enhance antibody-based immunotherapy. Fantini M; Arlen PM; Tsang KY Front Immunol; 2023; 14():1275904. PubMed ID: 38077389 [TBL] [Abstract][Full Text] [Related]
13. A CD8α(-) subpopulation of macaque circulatory natural killer cells can mediate both antibody-dependent and antibody-independent cytotoxic activities. Vargas-Inchaustegui DA; Demberg T; Robert-Guroff M Immunology; 2011 Nov; 134(3):326-40. PubMed ID: 21978002 [TBL] [Abstract][Full Text] [Related]
14. Hepatitis C virus-induced NK cell activation causes metzincin-mediated CD16 cleavage and impaired antibody-dependent cytotoxicity. Oliviero B; Mantovani S; Varchetta S; Mele D; Grossi G; Ludovisi S; Nuti E; Rossello A; Mondelli MU J Hepatol; 2017 Jun; 66(6):1130-1137. PubMed ID: 28192188 [TBL] [Abstract][Full Text] [Related]
15. Evaluating Human Natural Killer Cells Antibody-dependent Cellular Cytotoxicity (ADCC) Using Plate-bound Anti-CD16 Antibodies. Liu W Bio Protoc; 2022 Jan; 12(1):e4285. PubMed ID: 35118176 [TBL] [Abstract][Full Text] [Related]
16. A chimeric switch-receptor PD1-DAP10-41BB augments NK92-cell activation and killing for human lung Cancer H1299 Cell. Zhi L; Yin M; Su X; Zhang Z; Lu H; Li M; Guo C; Niu Z; Zhang X; Zhu W Biochem Biophys Res Commun; 2022 Apr; 600():94-100. PubMed ID: 35217362 [TBL] [Abstract][Full Text] [Related]
17. Gene-modified human α/β-T cells expressing a chimeric CD16-CD3ζ receptor as adoptively transferable effector cells for anticancer monoclonal antibody therapy. Ochi F; Fujiwara H; Tanimoto K; Asai H; Miyazaki Y; Okamoto S; Mineno J; Kuzushima K; Shiku H; Barrett J; Ishii E; Yasukawa M Cancer Immunol Res; 2014 Mar; 2(3):249-62. PubMed ID: 24778321 [TBL] [Abstract][Full Text] [Related]
18. V gamma 9 V delta 2 T cell cytotoxicity against tumor cells is enhanced by monoclonal antibody drugs--rituximab and trastuzumab. Tokuyama H; Hagi T; Mattarollo SR; Morley J; Wang Q; So HF; Moriyasu F; Nieda M; Nicol AJ Int J Cancer; 2008 Jun; 122(11):2526-34. PubMed ID: 18307255 [TBL] [Abstract][Full Text] [Related]
19. Cytotoxicity of CD19-CAR-NK92 cells is primarily mediated via perforin/granzyme pathway. Althaus J; Nilius-Eliliwi V; Maghnouj A; Döring S; Schroers R; Hudecek M; Hahn SA; Mika T Cancer Immunol Immunother; 2023 Aug; 72(8):2573-2583. PubMed ID: 37052701 [TBL] [Abstract][Full Text] [Related]
20. Long-term preservation of antibody-dependent cellular cytotoxicity (ADCC) of natural killer cells amplified in vitro from the peripheral blood of breast cancer patients after chemotherapy. Clémenceau B; Gallot G; Vivien R; Gaschet J; Campone M; Vié H J Immunother; 2006; 29(1):53-60. PubMed ID: 16365600 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]