These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 34349695)

  • 1. Identifying Interaction Patterns of Tangible Co-Adaptations in Human-Robot Team Behaviors.
    van Zoelen EM; van den Bosch K; Rauterberg M; Barakova E; Neerincx M
    Front Psychol; 2021; 12():645545. PubMed ID: 34349695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Becoming Team Members: Identifying Interaction Patterns of Mutual Adaptation for Human-Robot Co-Learning.
    van Zoelen EM; van den Bosch K; Neerincx M
    Front Robot AI; 2021; 8():692811. PubMed ID: 34295926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human-agent co-adaptation using error-related potentials.
    Ehrlich SK; Cheng G
    J Neural Eng; 2018 Dec; 15(6):066014. PubMed ID: 30204127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human-robot mutual adaptation in collaborative tasks: Models and experiments.
    Nikolaidis S; Hsu D; Srinivasa S
    Int J Rob Res; 2017 Jun; 36(5-7):618-634. PubMed ID: 32855581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analyzing the effects of human-aware motion planning on close-proximity human-robot collaboration.
    Lasota PA; Shah JA
    Hum Factors; 2015 Feb; 57(1):21-33. PubMed ID: 25790568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Learning Semantics of Gestural Instructions for Human-Robot Collaboration.
    Shukla D; Erkent Ö; Piater J
    Front Neurorobot; 2018; 12():7. PubMed ID: 29615888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robot Authority in Human-Robot Teaming: Effects of Human-Likeness and Physical Embodiment on Compliance.
    Haring KS; Satterfield KM; Tossell CC; de Visser EJ; Lyons JR; Mancuso VF; Finomore VS; Funke GJ
    Front Psychol; 2021; 12():625713. PubMed ID: 34135804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Robot is Present: Creative Approaches for Artistic Expression With Robots.
    Gomez Cubero C; Pekarik M; Rizzo V; Jochum E
    Front Robot AI; 2021; 8():662249. PubMed ID: 34395536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formalizing Human-Robot Mutual Adaptation: A Bounded Memory Model.
    Nikolaidis S; Kuznetsov A; Hsu D; Srinivasa S
    Proc ACM SIGCHI; 2016 Mar; 2016():75-82. PubMed ID: 30637416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. "That Robot Stared Back at Me!": Demonstrating Perceptual Ability Is Key to Successful Human-Robot Interactions.
    Iwasaki M; Zhou J; Ikeda M; Koike Y; Onishi Y; Kawamura T; Nakanishi H
    Front Robot AI; 2019; 6():85. PubMed ID: 33501100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arousal regulation and affective adaptation to human responsiveness by a robot that explores and learns a novel environment.
    Hiolle A; Lewis M; Cañamero L
    Front Neurorobot; 2014; 8():17. PubMed ID: 24860492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human-Robot Perception in Industrial Environments: A Survey.
    Bonci A; Cen Cheng PD; Indri M; Nabissi G; Sibona F
    Sensors (Basel); 2021 Feb; 21(5):. PubMed ID: 33668162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Integrated Framework for Human-Robot Collaborative Manipulation.
    Sheng W; Thobbi A; Gu Y
    IEEE Trans Cybern; 2015 Oct; 45(10):2030-41. PubMed ID: 25373136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Our Robots, Our Team: Robot Anthropomorphism Moderates Group Effects in Human-Robot Teams.
    Fraune MR
    Front Psychol; 2020; 11():1275. PubMed ID: 32765331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Approach of Social Navigation Based on Proxemics for Crowded Environments of Humans and Robots.
    Daza M; Barrios-Aranibar D; Diaz-Amado J; Cardinale Y; Vilasboas J
    Micromachines (Basel); 2021 Feb; 12(2):. PubMed ID: 33668527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. When Even a Robot Tutor Zooms: A Study of Embodiment, Attitudes, and Impressions.
    Kanero J; Tunalı ET; Oranç C; Göksun T; Küntay AC
    Front Robot AI; 2021; 8():679893. PubMed ID: 34368237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved Mutual Understanding for Human-Robot Collaboration: Combining Human-Aware Motion Planning with Haptic Feedback Devices for Communicating Planned Trajectory.
    Grushko S; Vysocký A; Oščádal P; Vocetka M; Novák P; Bobovský Z
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34070528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Robotic Cognitive Control Framework for Collaborative Task Execution and Learning.
    Caccavale R; Finzi A
    Top Cogn Sci; 2022 Apr; 14(2):327-343. PubMed ID: 34826350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preferred Interaction Styles for Human-Robot Collaboration Vary Over Tasks With Different Action Types.
    Schulz R; Kratzer P; Toussaint M
    Front Neurorobot; 2018; 12():36. PubMed ID: 30022933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synaptic plasticity in a recurrent neural network for versatile and adaptive behaviors of a walking robot.
    Grinke E; Tetzlaff C; Wörgötter F; Manoonpong P
    Front Neurorobot; 2015; 9():11. PubMed ID: 26528176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.