BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 34349730)

  • 1. Sulfamethoxazole-Altered Transcriptomein Green Alga
    Guo J; Zhang Y; Mo J; Sun H; Li Q
    Front Microbiol; 2021; 12():541451. PubMed ID: 34349730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptomic analysis suggests the inhibition of DNA damage repair in green alga Raphidocelis subcapitata exposed to roxithromycin.
    Guo J; Bai Y; Chen Z; Mo J; Li Q; Sun H; Zhang Q
    Ecotoxicol Environ Saf; 2020 Sep; 201():110737. PubMed ID: 32505758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptomic analysis of Raphidocelis subcapitata exposed to erythromycin: The role of DNA replication in hormesis and growth inhibition.
    Guo J; Ma Z; Peng J; Mo J; Li Q; Guo J; Yang F
    J Hazard Mater; 2021 Jan; 402():123512. PubMed ID: 32738783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tylosin toxicity in the alga Raphidocelis subcapitata revealed by integrated analyses of transcriptome and metabolome: Photosynthesis and DNA replication-coupled repair.
    Li Q; Lu D; Sun H; Guo J; Mo J
    Aquat Toxicol; 2021 Oct; 239():105964. PubMed ID: 34534865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptional response of a green alga (Raphidocelis subcapitata) exposed to triclosan: photosynthetic systems and DNA repair.
    Mo J; Qi Q; Hao Y; Lei Y; Guo J
    J Environ Sci (China); 2022 Jan; 111():400-411. PubMed ID: 34949369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrative analyses of transcriptomics and metabolomics in Raphidocelis subcapitata treated with clarithromycin.
    Peng J; Guo J; Lei Y; Mo J; Sun H; Song J
    Chemosphere; 2021 Mar; 266():128933. PubMed ID: 33223212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combined Effects of Sulfamethoxazole and Erythromycin on a Freshwater Microalga,
    Zhang Y; He D; Chang F; Dang C; Fu J
    Antibiotics (Basel); 2021 May; 10(5):. PubMed ID: 34068228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolomic profiles in a green alga (Raphidocelis subcapitata) following erythromycin treatment: ABC transporters and energy metabolism.
    Mo J; Ma Z; Yan S; Cheung NK; Yang F; Yao X; Guo J
    J Environ Sci (China); 2023 Feb; 124():591-601. PubMed ID: 36182165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Levofloxacin and sulfamethoxazole induced alterations of biomolecules in Pseudokirchneriella subcapitata.
    Xiong Q; Liu YS; Hu LX; Shi ZQ; Ying GG
    Chemosphere; 2020 Aug; 253():126722. PubMed ID: 32289608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmental concentrations of sulfamethoxazole increase crayfish Pacifastacus leniusculus susceptibility to White Spot Syndrome Virus.
    Hernández-Pérez A; Noonin C; Söderhäll K; Söderhäll I
    Fish Shellfish Immunol; 2020 Jul; 102():177-184. PubMed ID: 32311459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Palmelloid-like phenotype in the alga Raphidocelis subcapitata exposed to pollutants: A generalized adaptive strategy to stress or a specific cellular response?
    Machado MD; Soares EV
    Aquat Toxicol; 2023 Nov; 264():106732. PubMed ID: 37879199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of oxidative stress induced by clarithromycin in two freshwater microalgae Raphidocelis subcapitata and Chlorella vulgaris.
    Guo J; Peng J; Lei Y; Kanerva M; Li Q; Song J; Guo J; Sun H
    Aquat Toxicol; 2020 Feb; 219():105376. PubMed ID: 31838304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acute growth inhibition & toxicity analysis of nano-polystyrene spheres on Raphidocelis subcapitata.
    Reynolds A; Giltrap DM; Chambers PG
    Ecotoxicol Environ Saf; 2021 Jan; 207():111153. PubMed ID: 32896819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-metabolism of sulfamethoxazole by a freshwater microalga Chlorella pyrenoidosa.
    Xiong Q; Liu YS; Hu LX; Shi ZQ; Cai WW; He LY; Ying GG
    Water Res; 2020 May; 175():115656. PubMed ID: 32145399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biotransformation mechanism of Vibrio diabolicus to sulfamethoxazole at transcriptional level.
    Wang Q; Wang H; Jiang Y; Lv M; Wang X; Chen L
    J Hazard Mater; 2021 Jun; 411():125023. PubMed ID: 33429311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Is there synergistic interaction between fungicides inhibiting different enzymes in the ergosterol biosynthesis pathway in toxicity tests with the green alga Raphidocelis subcapitata?
    Coors A; Vollmar P; Sacher F; Kehrer A
    Ecotoxicology; 2018 Sep; 27(7):936-944. PubMed ID: 29500666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of biogenic substrates on sulfamethoxazole biodegradation kinetics by Achromobacter denitrificans strain PR1.
    Nguyen PY; Carvalho G; Reis AC; Nunes OC; Reis MAM; Oehmen A
    Biodegradation; 2017 Jun; 28(2-3):205-217. PubMed ID: 28285343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of erythromycin and sulfamethoxazole on Microcystis aeruginosa: Cytotoxic endpoints, production and release of microcystin-LR.
    Zhang M; Steinman AD; Xue Q; Zhao Y; Xu Y; Xie L
    J Hazard Mater; 2020 Nov; 399():123021. PubMed ID: 32937707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of trimethoprim, sulfamethoxazole, and triclosan by the green alga Nannochloris sp.
    Bai X; Acharya K
    J Hazard Mater; 2016 Sep; 315():70-5. PubMed ID: 27179202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytotoxicity and genotoxicity of coated-gold nanoparticles on freshwater algae Pseudokirchneriella subcapitata.
    Mahaye N; Leareng SK; Musee N
    Aquat Toxicol; 2021 Jul; 236():105865. PubMed ID: 34034204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.