These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Photocatalytic Systems for CO Kumagai H; Tamaki Y; Ishitani O Acc Chem Res; 2022 Apr; 55(7):978-990. PubMed ID: 35255207 [TBL] [Abstract][Full Text] [Related]
4. Photocatalysis of a Dinuclear Ru(II)-Re(I) Complex for CO Saito D; Yamazaki Y; Tamaki Y; Ishitani O J Am Chem Soc; 2020 Nov; 142(45):19249-19258. PubMed ID: 33121248 [TBL] [Abstract][Full Text] [Related]
5. Photocatalytic CO2 reduction to formic acid using a Ru(II)-Re(I) supramolecular complex in an aqueous solution. Nakada A; Koike K; Nakashima T; Morimoto T; Ishitani O Inorg Chem; 2015 Feb; 54(4):1800-7. PubMed ID: 25654586 [TBL] [Abstract][Full Text] [Related]
6. Kinetics and Mechanism of Intramolecular Electron Transfer in Ru(II)-Re(I) Supramolecular CO Yamazaki Y; Ohkubo K; Saito D; Yatsu T; Tamaki Y; Tanaka S; Koike K; Onda K; Ishitani O Inorg Chem; 2019 Sep; 58(17):11480-11492. PubMed ID: 31418554 [TBL] [Abstract][Full Text] [Related]
7. Iridium(III) 1-Phenylisoquinoline Complexes as a Photosensitizer for Photocatalytic CO2 Reduction: A Mixed System with a Re(I) Catalyst and a Supramolecular Photocatalyst. Kuramochi Y; Ishitani O Inorg Chem; 2016 Jun; 55(11):5702-9. PubMed ID: 27212275 [TBL] [Abstract][Full Text] [Related]
10. Investigation of excited state, reductive quenching, and intramolecular electron transfer of Ru(ii)-Re(i) supramolecular photocatalysts for CO Koike K; Grills DC; Tamaki Y; Fujita E; Okubo K; Yamazaki Y; Saigo M; Mukuta T; Onda K; Ishitani O Chem Sci; 2018 Mar; 9(11):2961-2974. PubMed ID: 29719677 [TBL] [Abstract][Full Text] [Related]
11. Rhenium(i) trinuclear rings as highly efficient redox photosensitizers for photocatalytic CO Rohacova J; Ishitani O Chem Sci; 2016 Nov; 7(11):6728-6739. PubMed ID: 28451117 [TBL] [Abstract][Full Text] [Related]
12. Development of highly efficient supramolecular CO2 reduction photocatalysts with high turnover frequency and durability. Tamaki Y; Watanabe K; Koike K; Inoue H; Morimoto T; Ishitani O Faraday Discuss; 2012; 155():115-27; discussion 207-22. PubMed ID: 22470970 [TBL] [Abstract][Full Text] [Related]
13. Efficient Photocatalysts for CO2 Reduction. Sahara G; Ishitani O Inorg Chem; 2015 Jun; 54(11):5096-104. PubMed ID: 25629382 [TBL] [Abstract][Full Text] [Related]
14. Photocatalytic Reduction of Low Concentration of CO Nakajima T; Tamaki Y; Ueno K; Kato E; Nishikawa T; Ohkubo K; Yamazaki Y; Morimoto T; Ishitani O J Am Chem Soc; 2016 Oct; 138(42):13818-13821. PubMed ID: 27704819 [TBL] [Abstract][Full Text] [Related]
15. Photochemical reduction of CO2 with ascorbate in aqueous solution using vesicles acting as photocatalysts. Ikuta N; Takizawa SY; Murata S Photochem Photobiol Sci; 2014 Apr; 13(4):691-702. PubMed ID: 24549095 [TBL] [Abstract][Full Text] [Related]
16. Improving the photocatalytic reduction of CO2 to CO through immobilisation of a molecular Re catalyst on TiO2. Windle CD; Pastor E; Reynal A; Whitwood AC; Vaynzof Y; Durrant JR; Perutz RN; Reisner E Chemistry; 2015 Feb; 21(9):3746-54. PubMed ID: 25639778 [TBL] [Abstract][Full Text] [Related]
17. Highly efficient supramolecular photocatalysts for CO2 reduction using visible light. Sato S; Koike K; Inoue H; Ishitani O Photochem Photobiol Sci; 2007 Apr; 6(4):454-61. PubMed ID: 17404641 [TBL] [Abstract][Full Text] [Related]
18. Architecture of supramolecular metal complexes for photocatalytic CO2 reduction: ruthenium-rhenium bi- and tetranuclear complexes. Gholamkhass B; Mametsuka H; Koike K; Tanabe T; Furue M; Ishitani O Inorg Chem; 2005 Apr; 44(7):2326-36. PubMed ID: 15792468 [TBL] [Abstract][Full Text] [Related]