BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 34349961)

  • 1. Enzyme-activatable fluorescent probes for β-galactosidase: from design to biological applications.
    Yao Y; Zhang Y; Yan C; Zhu WH; Guo Z
    Chem Sci; 2021 Jul; 12(29):9885-9894. PubMed ID: 34349961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-Time Tracking and In Vivo Visualization of β-Galactosidase Activity in Colorectal Tumor with a Ratiometric Near-Infrared Fluorescent Probe.
    Gu K; Xu Y; Li H; Guo Z; Zhu S; Zhu S; Shi P; James TD; Tian H; Zhu WH
    J Am Chem Soc; 2016 Apr; 138(16):5334-40. PubMed ID: 27054782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An enzyme-activatable probe liberating AIEgens: on-site sensing and long-term tracking of β-galactosidase in ovarian cancer cells.
    Gu K; Qiu W; Guo Z; Yan C; Zhu S; Yao D; Shi P; Tian H; Zhu WH
    Chem Sci; 2019 Jan; 10(2):398-405. PubMed ID: 30746088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design strategies and biological applications of β-galactosidase fluorescent sensor in ovarian cancer research and beyond.
    Li L; Jia F; Li Y; Peng Y
    RSC Adv; 2024 Jan; 14(5):3010-3023. PubMed ID: 38239445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rational design of near-infrared ratiometric fluorescent probes for real-time tracking of β-galactosidase in vivo.
    Chen S; Liu M; Zi Y; He J; Wang L; Wu Y; Hou S; Wu W
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Jan; 285():121879. PubMed ID: 36122464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near-Infrared Aggregation-Induced Emission-Active Probe Enables
    Fu W; Yan C; Zhang Y; Ma Y; Guo Z; Zhu WH
    Front Chem; 2019; 7():291. PubMed ID: 31139612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. β-Galactosidase-activated near-infrared AIEgen for ovarian cancer imaging in vivo.
    Xu L; Gao H; Deng Y; Liu X; Zhan W; Sun X; Xu JJ; Liang G
    Biosens Bioelectron; 2024 Jul; 255():116207. PubMed ID: 38554575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NIR-excited imaging and in vivo visualization of β-galactosidase activity using a pyranonitrile-modified upconversion nanoprobe.
    Jiang D; Tan Q; Shen Y; Ye M; Li J; Zhou Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 May; 292():122411. PubMed ID: 36731306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imaging of ovarian cancers using enzyme activatable probes with second near-infrared window emission.
    Chen JA; Pan H; Wang Z; Gao J; Tan J; Ouyang Z; Guo W; Gu X
    Chem Commun (Camb); 2020 Mar; 56(18):2731-2734. PubMed ID: 32022000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A sensitive fluorescent probe for β-galactosidase activity detection and application in ovarian tumor imaging.
    Fan F; Zhang L; Zhou X; Mu F; Shi G
    J Mater Chem B; 2021 Jan; 9(1):170-175. PubMed ID: 33230516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new near-infrared excitation/emission fluorescent probe for the detection of β-galactosidase in living cells and in vivo.
    Li Y; Liu F; Zhu D; Zhu T; Zhang Y; Li Y; Luo J; Kong L
    Talanta; 2022 Jan; 237():122952. PubMed ID: 34736678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A turn on fluorescent assay for real time determination of β-galactosidase and its application in living cell imaging.
    Liu D; Zhang Z; Chen A; Zhang P
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Jan; 265():120345. PubMed ID: 34492512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An NIR Fluorescence Turn-on and MRl Bimodal Probe for Concurrent Real-time in vivo Sensing and Labeling of β-Galactosidase.
    Yu Q; Zhang L; Jiang M; Xiao L; Xiang Y; Wang R; Liu Z; Zhou R; Yang M; Li C; Liu M; Zhou X; Chen S
    Angew Chem Int Ed Engl; 2023 Nov; 62(46):e202313137. PubMed ID: 37766426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. First aggregation-induced emission-active probe for species-specific detection of β-galactosidase.
    Gao T; Li H; Wu Y; Deng C; Xie Y; Wang J; Yang Y; Lv Q; Jin Q; Chen Y; Yi L; Zhong Y; Li X; Zhao Q; Zhang L; Xie M
    Talanta; 2021 Dec; 235():122659. PubMed ID: 34517575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Advances of Molecular Optical Probes in Imaging of β-Galactosidase.
    Zhang J; Cheng P; Pu K
    Bioconjug Chem; 2019 Aug; 30(8):2089-2101. PubMed ID: 31269795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzyme-Instructed Aggregation/Dispersion of Fluorophores for Near-Infrared Fluorescence Imaging In Vivo.
    Zhang Z; Chen P; Sun Y
    Molecules; 2023 Jul; 28(14):. PubMed ID: 37513233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A near-infrared fluorescent probe for the ratiometric detection and living cell imaging of β-galactosidase.
    Zhang X; Chen X; Zhang Y; Liu K; Shen H; Zheng E; Huang X; Hou S; Ma X
    Anal Bioanal Chem; 2019 Dec; 411(30):7957-7966. PubMed ID: 31732786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specific Near-Infrared Probe for Ultrafast Imaging of Lysosomal β-Galactosidase in Ovarian Cancer Cells.
    Li X; Pan Y; Chen H; Duan Y; Zhou S; Wu W; Wang S; Liu B
    Anal Chem; 2020 Apr; 92(8):5772-5779. PubMed ID: 32212603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioprobes based on AIE fluorogens.
    Ding D; Li K; Liu B; Tang BZ
    Acc Chem Res; 2013 Nov; 46(11):2441-53. PubMed ID: 23742638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visualization of endogenous β-galactosidase activity in living cells and zebrafish with a turn-on near-infrared fluorescent probe.
    Pang X; Li Y; Zhou Z; Lu Q; Xie R; Wu C; Zhang Y; Li H
    Talanta; 2020 Sep; 217():121098. PubMed ID: 32498839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.