BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 34350157)

  • 1. Radical SAM Enzymes and Ribosomally-Synthesized and Post-translationally Modified Peptides: A Growing Importance in the Microbiomes.
    Benjdia A; Berteau O
    Front Chem; 2021; 9():678068. PubMed ID: 34350157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radical SAM Enzymes in the Biosynthesis of Ribosomally Synthesized and Post-translationally Modified Peptides (RiPPs).
    Benjdia A; Balty C; Berteau O
    Front Chem; 2017; 5():87. PubMed ID: 29167789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ruminococcin C, an anti-clostridial sactipeptide produced by a prominent member of the human microbiota
    Balty C; Guillot A; Fradale L; Brewee C; Boulay M; Kubiak X; Benjdia A; Berteau O
    J Biol Chem; 2019 Oct; 294(40):14512-14525. PubMed ID: 31337708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and mechanistic basis for RiPP epimerization by a radical SAM enzyme.
    Kubiak X; Polsinelli I; Chavas LMG; Fyfe CD; Guillot A; Fradale L; Brewee C; Grimaldi S; Gerbaud G; Thureau A; Legrand P; Berteau O; Benjdia A
    Nat Chem Biol; 2024 Mar; 20(3):382-391. PubMed ID: 38158457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Current Advancements in Sactipeptide Natural Products.
    Chen Y; Wang J; Li G; Yang Y; Ding W
    Front Chem; 2021; 9():595991. PubMed ID: 34095082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RaS-RiPPs in Streptococci and the Human Microbiome.
    Clark KA; Bushin LB; Seyedsayamdost MR
    ACS Bio Med Chem Au; 2022 Aug; 2(4):328-339. PubMed ID: 35996476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biosynthesis of the sactipeptide Ruminococcin C by the human microbiome: Mechanistic insights into thioether bond formation by radical SAM enzymes.
    Balty C; Guillot A; Fradale L; Brewee C; Lefranc B; Herrero C; Sandström C; Leprince J; Berteau O; Benjdia A
    J Biol Chem; 2020 Dec; 295(49):16665-16677. PubMed ID: 32972973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacterial cyclophane-containing RiPPs from radical SAM enzymes.
    Phan CS; Morinaka BI
    Nat Prod Rep; 2024 May; 41(5):708-720. PubMed ID: 38047390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New Insights into the Biosynthetic Logic of Ribosomally Synthesized and Post-translationally Modified Peptide Natural Products.
    Ortega MA; van der Donk WA
    Cell Chem Biol; 2016 Jan; 23(1):31-44. PubMed ID: 26933734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accessing and exploring the unusual chemistry by radical SAM-RiPP enzymes.
    Guo Q; Morinaka BI
    Curr Opin Chem Biol; 2024 Jun; 81():102483. PubMed ID: 38917731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioactive Peptide Natural Products as Lead Structures for Medicinal Use.
    Dang T; Süssmuth RD
    Acc Chem Res; 2017 Jul; 50(7):1566-1576. PubMed ID: 28650175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discovery of novel fungal RiPP biosynthetic pathways and their application for the development of peptide therapeutics.
    Vogt E; Künzler M
    Appl Microbiol Biotechnol; 2019 Jul; 103(14):5567-5581. PubMed ID: 31147756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Challenges and advances in genome mining of ribosomally synthesized and post-translationally modified peptides (RiPPs).
    Zhong Z; He B; Li J; Li YX
    Synth Syst Biotechnol; 2020 Sep; 5(3):155-172. PubMed ID: 32637669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uncovering Novel Peptide Chemistry from Bacterial Natural Products.
    Hubrich F; Lotti A; Scott TA; Piel J
    Chimia (Aarau); 2021 Jun; 75(6):543-547. PubMed ID: 34233822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Advances in Discovery, Bioengineering, and Bioactivity-Evaluation of Ribosomally Synthesized and Post-translationally Modified Peptides.
    Zhong G; Wang ZJ; Yan F; Zhang Y; Huo L
    ACS Bio Med Chem Au; 2023 Feb; 3(1):1-31. PubMed ID: 37101606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The manifold roles of microbial ribosomal peptide-based natural products in physiology and ecology.
    Li Y; Rebuffat S
    J Biol Chem; 2020 Jan; 295(1):34-54. PubMed ID: 31784450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MetaMiner: A Scalable Peptidogenomics Approach for Discovery of Ribosomal Peptide Natural Products with Blind Modifications from Microbial Communities.
    Cao L; Gurevich A; Alexander KL; Naman CB; Leão T; Glukhov E; Luzzatto-Knaan T; Vargas F; Quinn R; Bouslimani A; Nothias LF; Singh NK; Sanders JG; Benitez RAS; Thompson LR; Hamid MN; Morton JT; Mikheenko A; Shlemov A; Korobeynikov A; Friedberg I; Knight R; Venkateswaran K; Gerwick WH; Gerwick L; Dorrestein PC; Pevzner PA; Mohimani H
    Cell Syst; 2019 Dec; 9(6):600-608.e4. PubMed ID: 31629686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three Principles of Diversity-Generating Biosynthesis.
    Gu W; Schmidt EW
    Acc Chem Res; 2017 Oct; 50(10):2569-2576. PubMed ID: 28891639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and spectroscopic analyses of the sporulation killing factor biosynthetic enzyme SkfB, a bacterial AdoMet radical sactisynthase.
    Grell TAJ; Kincannon WM; Bruender NA; Blaesi EJ; Krebs C; Bandarian V; Drennan CL
    J Biol Chem; 2018 Nov; 293(45):17349-17361. PubMed ID: 30217813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DeepRiPP integrates multiomics data to automate discovery of novel ribosomally synthesized natural products.
    Merwin NJ; Mousa WK; Dejong CA; Skinnider MA; Cannon MJ; Li H; Dial K; Gunabalasingam M; Johnston C; Magarvey NA
    Proc Natl Acad Sci U S A; 2020 Jan; 117(1):371-380. PubMed ID: 31871149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.