These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 34350213)

  • 21. Discovering diverse solutions in deep reinforcement learning by maximizing state-action-based mutual information.
    Osa T; Tangkaratt V; Sugiyama M
    Neural Netw; 2022 Aug; 152():90-104. PubMed ID: 35523085
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Learning to Forget for Meta-Learning via Task-and-Layer-Wise Attenuation.
    Baik S; Oh J; Hong S; Lee KM
    IEEE Trans Pattern Anal Mach Intell; 2022 Nov; 44(11):7718-7730. PubMed ID: 34347593
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Compositional diversity in visual concept learning.
    Zhou Y; Feinman R; Lake BM
    Cognition; 2024 Mar; 244():105711. PubMed ID: 38224649
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Data-Driven Safe Policy Optimization for Black-Box Dynamical Systems With Temporal Logic Specifications.
    Zhang C; Lin S; Wang H; Chen Z; Wang S; Kan Z
    IEEE Trans Neural Netw Learn Syst; 2023 Dec; PP():. PubMed ID: 38109255
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Meta-Reinforcement Learning in Non-Stationary and Dynamic Environments.
    Bing Z; Lerch D; Huang K; Knoll A
    IEEE Trans Pattern Anal Mach Intell; 2023 Mar; 45(3):3476-3491. PubMed ID: 35737617
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reinforcement Learning With Low-Complexity Liquid State Machines.
    Ponghiran W; Srinivasan G; Roy K
    Front Neurosci; 2019; 13():883. PubMed ID: 31507361
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Leveraging Predictions of Task-Related Latents for Interactive Visual Navigation.
    Shen J; Yuan L; Lu Y; Lyu S
    IEEE Trans Neural Netw Learn Syst; 2023 Dec; PP():. PubMed ID: 38039173
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reinforcement Learning Tracking Control for Robotic Manipulator With Kernel-Based Dynamic Model.
    Hu Y; Wang W; Liu H; Liu L
    IEEE Trans Neural Netw Learn Syst; 2020 Sep; 31(9):3570-3578. PubMed ID: 31689218
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A theory of relation learning and cross-domain generalization.
    Doumas LAA; Puebla G; Martin AE; Hummel JE
    Psychol Rev; 2022 Oct; 129(5):999-1041. PubMed ID: 35113620
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Self-augmentation: Generalizing deep networks to unseen classes for few-shot learning.
    Seo JW; Jung HG; Lee SW
    Neural Netw; 2021 Jun; 138():140-149. PubMed ID: 33652370
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bi-DexHands: Towards Human-Level Bimanual Dexterous Manipulation.
    Chen Y; Geng Y; Zhong F; Ji J; Jiang J; Lu Z; Dong H; Yang Y
    IEEE Trans Pattern Anal Mach Intell; 2024 May; 46(5):2804-2818. PubMed ID: 38051620
    [TBL] [Abstract][Full Text] [Related]  

  • 32. starMC: an automata based CTL* model checker.
    Amparore EG; Donatelli S; Gallà F
    PeerJ Comput Sci; 2022; 8():e823. PubMed ID: 35494878
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Task-Driven Reinforcement Learning With Action Primitives for Long-Horizon Manipulation Skills.
    Wang H; Zhang H; Li L; Kan Z; Song Y
    IEEE Trans Cybern; 2024 Aug; 54(8):4513-4526. PubMed ID: 37566505
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A learning-based synthesis approach of reward asynchronous probabilistic games against the linear temporal logic winning condition.
    Zhao W; Liu Z
    PeerJ Comput Sci; 2022; 8():e1094. PubMed ID: 36091983
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Learning to Predict Consequences as a Method of Knowledge Transfer in Reinforcement Learning.
    Chalmers E; Contreras EB; Robertson B; Luczak A; Gruber A
    IEEE Trans Neural Netw Learn Syst; 2018 Jun; 29(6):2259-2270. PubMed ID: 28436902
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transforming task representations to perform novel tasks.
    Lampinen AK; McClelland JL
    Proc Natl Acad Sci U S A; 2020 Dec; 117(52):32970-32981. PubMed ID: 33303652
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Compositional Learning of Human Activities With a Self-Organizing Neural Architecture.
    Mici L; Parisi GI; Wermter S
    Front Robot AI; 2019; 6():72. PubMed ID: 33501087
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A complementary learning systems approach to temporal difference learning.
    Blakeman S; Mareschal D
    Neural Netw; 2020 Feb; 122():218-230. PubMed ID: 31689680
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Open-Ended Learning: A Conceptual Framework Based on Representational Redescription.
    Doncieux S; Filliat D; Díaz-Rodríguez N; Hospedales T; Duro R; Coninx A; Roijers DM; Girard B; Perrin N; Sigaud O
    Front Neurorobot; 2018; 12():59. PubMed ID: 30319388
    [TBL] [Abstract][Full Text] [Related]  

  • 40. From Semantics to Execution: Integrating Action Planning With Reinforcement Learning for Robotic Causal Problem-Solving.
    Eppe M; Nguyen PDH; Wermter S
    Front Robot AI; 2019; 6():123. PubMed ID: 33501138
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.